BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23321384)

  • 1. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis.
    Bhatt DP; Houdek HM; Watt JA; Rosenberger TA
    Neurochem Int; 2013 Feb; 62(3):296-305. PubMed ID: 23321384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A₂A receptor levels in rats subjected to neuroinflammation.
    Smith MD; Bhatt DP; Geiger JD; Rosenberger TA
    J Neuroinflammation; 2014 Jun; 11():99. PubMed ID: 24898794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.
    Reisenauer CJ; Bhatt DP; Mitteness DJ; Slanczka ER; Gienger HM; Watt JA; Rosenberger TA
    J Neurochem; 2011 Apr; 117(2):264-74. PubMed ID: 21272004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression.
    Soliman ML; Rosenberger TA
    Mol Cell Biochem; 2011 Jun; 352(1-2):173-80. PubMed ID: 21359531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing acetyl-CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis.
    Chevalier AC; Rosenberger TA
    J Neurochem; 2017 Jun; 141(5):721-737. PubMed ID: 28369944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [High energy phosphate compounds and ATPase activity of mitochondria in the brain of rats of different ages].
    Potapenko RI
    Ukr Biokhim Zh (1978); 1983; 55(5):563-6. PubMed ID: 6227120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide transport and adenosine production in isolated rat heart mitochondria during acetate metabolism.
    Kiviluoma KT; Peuhkurinen KJ; Hassinen IE
    Biochim Biophys Acta; 1989 May; 974(3):274-81. PubMed ID: 2543456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of L and D-carnitine on brain energy metabolites in mice given sublethal doses of ammonium acetate.
    Matsuoka M; Igisu H
    Pharmacol Toxicol; 1993 Mar; 72(3):145-7. PubMed ID: 8516263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fructose-1,6-bisphosphate and fructose-2,6-bisphosphate do not influence brain carbohydrate or high-energy phosphate metabolism in a rat model of forebrain ischemia.
    Hofer RE; Wagner SR; Pasternak JJ; Albrecht RF; Gallagher WJ; Lanier WL
    J Neurosurg Anesthesiol; 2009 Jan; 21(1):31-9. PubMed ID: 19098621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dopexamine on intestinal tissue concentrations of high-energy phosphates and intestinal release of purine compounds in endotoxemic rats.
    Schmidt H; Weigand MA; Schmidt W; Plaschke K; Martin E; Bardenheuer HJ
    Crit Care Med; 2000 Jun; 28(6):1979-84. PubMed ID: 10890651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
    Das S; Wong R; Rajapakse N; Murphy E; Steenbergen C
    Circ Res; 2008 Oct; 103(9):983-91. PubMed ID: 18802025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The acute lethality of acrylonitrile is not due to brain metabolic arrest.
    Campian EC; Benz FW
    Toxicology; 2008 Nov; 253(1-3):104-9. PubMed ID: 18834918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of pyridrol on energy metabolism in the brain during prolonged muscular activity].
    Saratikov AS; Revina TA; Ryzhov AI; Sal'nik BIu
    Biull Eksp Biol Med; 1971 Nov; 72(11):35-7. PubMed ID: 4399789
    [No Abstract]   [Full Text] [Related]  

  • 14. Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain.
    Mathew R; Arun P; Madhavarao CN; Moffett JR; Namboodiri MA
    J Pharmacol Exp Ther; 2005 Oct; 315(1):297-303. PubMed ID: 16002461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain glucose utilization in undernourished rats.
    Chase HP; Rodgerson DO; Lindsley W; Thorne T; Cheung G
    Pediatr Res; 1976 Feb; 10(2):102-7. PubMed ID: 1246466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral energy metabolism during recovery from carbon monoxide hypoxia-oligemia.
    MacMillan V
    Brain Res; 1978 Aug; 151(2):353-68. PubMed ID: 679014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ischemia-induced activation of AMPK does not increase glucose uptake in glycogen-replete isolated working rat hearts.
    Omar MA; Fraser H; Clanachan AS
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1266-73. PubMed ID: 18178721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of glucose, glycogen, and high-energy phosphates during complete cerebral ischemia. A comparison of normoglycemic, chronically hyperglycemic diabetic, and acutely hyperglycemic nondiabetic rats.
    Wagner SR; Lanier WL
    Anesthesiology; 1994 Dec; 81(6):1516-26. PubMed ID: 7992921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of acetyl-L-carnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat--study by 13P- and 1H-NMR spectroscopy.
    Aureli T; Miccheli A; Di Cocco ME; Ghirardi O; Giuliani A; Ramacci MT; Conti F
    Brain Res; 1994 Apr; 643(1-2):92-9. PubMed ID: 8032936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caffeine decreases malonyl-CoA in isolated perfused skeletal muscle of rats.
    Maclean PS; Winder WW
    J Appl Physiol (1985); 1995 Apr; 78(4):1496-501. PubMed ID: 7615461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.