BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 23321417)

  • 41. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview.
    Jhanwar SC
    Adv Biol Regul; 2015 May; 58():28-37. PubMed ID: 25499150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Clinical picture and molecular disorders in myelodysplastic (MDP) syndromes].
    Rupniewska ZM
    Pol Arch Med Wewn; 1992 Mar; 87(3):197-208. PubMed ID: 1523148
    [No Abstract]   [Full Text] [Related]  

  • 43. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia.
    Pasquet M; Bellanné-Chantelot C; Tavitian S; Prade N; Beaupain B; Larochelle O; Petit A; Rohrlich P; Ferrand C; Van Den Neste E; Poirel HA; Lamy T; Ouachée-Chardin M; Mansat-De Mas V; Corre J; Récher C; Plat G; Bachelerie F; Donadieu J; Delabesse E
    Blood; 2013 Jan; 121(5):822-9. PubMed ID: 23223431
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes.
    Chesnais V; Arcangeli ML; Delette C; Rousseau A; Guermouche H; Lefevre C; Bondu S; Diop M; Cheok M; Chapuis N; Legros L; Raynaud S; Willems L; Bouscary D; Lauret E; Bernard OA; Kosmider O; Pflumio F; Fontenay M
    Blood; 2017 Jan; 129(4):484-496. PubMed ID: 27856460
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evi-1 and MDS1-Evi-1 genes in pathogenesis of myelodysplastic syndromes and post-MDS acute myeloid leukemia.
    Xu K; Wang L; Hao Y; Shao Z; Meng Q; Li K; Chao H; Tang K; Wang L
    Chin Med J (Engl); 1999 Dec; 112(12):1112-8. PubMed ID: 11721451
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FLT3 internal tandem duplication during myelodysplastic syndrome follow-up: a marker of transformation to acute myeloid leukemia.
    Pinheiro RF; de Sá Moreira E; Silva MR; Alberto FL; Chauffaille Mde L
    Cancer Genet Cytogenet; 2008 Jun; 183(2):89-93. PubMed ID: 18503825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mechanisms involved in the progression of myelodysplastic syndrome.
    Nolte F; Hofmann WK
    Future Oncol; 2010 Mar; 6(3):445-55. PubMed ID: 20222800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Precursors of acute leukemia: myelodysplastic syndromes and myeloproliferative neoplasms].
    Kreipe HH
    Pathologe; 2011 Nov; 32 Suppl 2():271-6. PubMed ID: 22033685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level.
    Chen J; Kao YR; Sun D; Todorova TI; Reynolds D; Narayanagari SR; Montagna C; Will B; Verma A; Steidl U
    Nat Med; 2019 Jan; 25(1):103-110. PubMed ID: 30510255
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.
    Kotini AG; Chang CJ; Chow A; Yuan H; Ho TC; Wang T; Vora S; Solovyov A; Husser C; Olszewska M; Teruya-Feldstein J; Perumal D; Klimek VM; Spyridonidis A; Rampal RK; Silverman L; Reddy EP; Papaemmanuil E; Parekh S; Greenbaum BD; Leslie CS; Kharas MG; Papapetrou EP
    Cell Stem Cell; 2017 Mar; 20(3):315-328.e7. PubMed ID: 28215825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA: an important regulator in acute myeloid leukemia.
    Wang X; Chen H; Bai J; He A
    Cell Biol Int; 2017 Sep; 41(9):936-945. PubMed ID: 28370893
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Telomeres and telomerase in normal and leukemic hematopoietic cells.
    Engelhardt M; Wäsch R; Guo Y
    Leuk Res; 2004 Oct; 28(10):1001-4. PubMed ID: 15289009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations.
    Harada Y; Harada H
    J Cell Biochem; 2011 Feb; 112(2):425-32. PubMed ID: 21268063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality?
    Pleyer L; Valent P; Greil R
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27355944
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Advance of studies on microRNA and myelodysplastic syndrome].
    Yang YJ; Li X
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Aug; 19(4):1079-82. PubMed ID: 21867648
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Epigenetic dysregulation in myelodysplastic syndrome].
    Sashida G; Iwama A
    Rinsho Ketsueki; 2015 Feb; 56(2):111-8. PubMed ID: 25765789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome.
    Xu F; Liu L; Chang CK; He Q; Wu LY; Zhang Z; Shi WH; Guo J; Zhu Y; Zhao YS; Gu SC; Fei CM; Li X
    Oncotarget; 2016 Feb; 7(7):8119-30. PubMed ID: 26812882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the pathogenesis of myelodysplastic syndromes.
    Delforge M
    Hematol J; 2003; 4(5):303-9. PubMed ID: 14502253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High expression of interleukin-2 receptor α-chain (CD25) in myelodysplastic syndrome preceding acute myeloid leukemia and chronic myeloid leukemia in myeloid blast crisis.
    Nakase K; Kita K; Kyo T; Katayama N
    Leuk Lymphoma; 2017 May; 58(5):1268-1270. PubMed ID: 27736287
    [No Abstract]   [Full Text] [Related]  

  • 60. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias.
    Testa U; Pelosi E
    Leuk Lymphoma; 2015 May; 56(5):1466-74. PubMed ID: 25242094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.