BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2332166)

  • 1. Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins.
    Rubin RA; Levy SB; Heinrikson RL; Kézdy FJ
    Gene; 1990 Mar; 87(1):7-13. PubMed ID: 2332166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdomain hybrid Tet proteins confer tetracycline resistance only when they are derived from closely related members of the tet gene family.
    Rubin RA; Levy SB
    J Bacteriol; 1990 May; 172(5):2303-12. PubMed ID: 2185211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides.
    Rubin RA; Levy SB
    J Bacteriol; 1991 Jul; 173(14):4503-9. PubMed ID: 2066343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems.
    Tauch A; Pühler A; Kalinowski J; Thierbach G
    Plasmid; 2000 Nov; 44(3):285-91. PubMed ID: 11078655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An N-terminal domain of the tetracycline resistance protein increases susceptibility to aminoglycosides and complements potassium uptake defects in Escherichia coli.
    Griffith JK; Kogoma T; Corvo DL; Anderson WL; Kazim AL
    J Bacteriol; 1988 Feb; 170(2):598-604. PubMed ID: 3276661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying expression of Tn10 encoded tetracycline resistance.
    Hillen W; Berens C
    Annu Rev Microbiol; 1994; 48():345-69. PubMed ID: 7826010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants.
    Sloan J; McMurry LM; Lyras D; Levy SB; Rood JI
    Mol Microbiol; 1994 Jan; 11(2):403-15. PubMed ID: 8170402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the tet gene of plasmid pCIS7 isolated from Bacillus subtilis.
    Ives CL; Bott KF
    Gene; 1990 Sep; 94(1):115-9. PubMed ID: 2121615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210.
    Charpentier E; Gerbaud G; Courvalin P
    Gene; 1993 Sep; 131(1):27-34. PubMed ID: 8370538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for interactions between helices 5 and 8 and a role for the interdomain loop in tetracycline resistance mediated by hybrid Tet proteins.
    Saraceni-Richards CA; Levy SB
    J Biol Chem; 2000 Mar; 275(9):6101-6. PubMed ID: 10692399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria.
    Aminov RI; Chee-Sanford JC; Garrigues N; Teferedegne B; Krapac IJ; White BA; Mackie RI
    Appl Environ Microbiol; 2002 Apr; 68(4):1786-93. PubMed ID: 11916697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased function of the class B tetracycline efflux protein Tet with mutations at aspartate 15, a putative intramembrane residue.
    McMurry LM; Stephan M; Levy SB
    J Bacteriol; 1992 Oct; 174(19):6294-7. PubMed ID: 1328154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tetracycline repressor of pSC101.
    Brow MA; Pesin R; Sutcliffe JG
    Mol Biol Evol; 1985 Jan; 2(1):1-12. PubMed ID: 3916707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex real-time SYBR Green I PCR assay for detection of tetracycline efflux genes of Gram-negative bacteria.
    Fan W; Hamilton T; Webster-Sesay S; Nikolich MP; Lindler LE
    Mol Cell Probes; 2007 Aug; 21(4):245-56. PubMed ID: 17367991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that TET protein functions as a multimer in the inner membrane of Escherichia coli.
    Hickman RK; Levy SB
    J Bacteriol; 1988 Apr; 170(4):1715-20. PubMed ID: 3280550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices.
    Guay GG; Khan SA; Rothstein DM
    Plasmid; 1993 Sep; 30(2):163-6. PubMed ID: 8234490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of the tet(M) gene in Gardnerella vaginalis.
    Huang R; Gascoyne-Binzi DM; Hawkey PM; Yu M; Heritage J; Eley A
    J Antimicrob Chemother; 1997 Oct; 40(4):561-5. PubMed ID: 9372426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-site suppressor mutations for the serine 202 to phenylalanine substitution within the interdomain loop of the tetracycline efflux protein Tet(C).
    Sapunaric FM; Levy SB
    J Biol Chem; 2003 Aug; 278(31):28588-92. PubMed ID: 12766164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous repressor-operator recognition among four classes of tetracycline resistance determinants.
    Klock G; Unger B; Gatz C; Hillen W; Altenbuchner J; Schmid K; Schmitt R
    J Bacteriol; 1985 Jan; 161(1):326-32. PubMed ID: 3881391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of the gene, protein purification and characterization of the pSC101-encoded tetracycline resistance-gene-repressor.
    Unger B; Becker J; Hillen W
    Gene; 1984 Nov; 31(1-3):103-8. PubMed ID: 6241169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.