These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23321665)
41. Nitrate removal from groundwater driven by electricity generation and heterotrophic denitrification in a bioelectrochemical system. Tong Y; He Z J Hazard Mater; 2013 Nov; 262():614-9. PubMed ID: 24096001 [TBL] [Abstract][Full Text] [Related]
42. Determination of electron donors by comparing reaction rates for in situ bioremediation of nitrate-contaminated groundwater. Oa SW; Kim G; Kim Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(10):2359-72. PubMed ID: 17018418 [TBL] [Abstract][Full Text] [Related]
43. Using cassava distiller's dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater. Wan R; Zheng X; Chen Y; Wang H Appl Microbiol Biotechnol; 2015 Mar; 99(6):2839-47. PubMed ID: 25343978 [TBL] [Abstract][Full Text] [Related]
44. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Shin KH; Cha DK Chemosphere; 2008 May; 72(2):257-62. PubMed ID: 18331753 [TBL] [Abstract][Full Text] [Related]
45. Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification. He Q; Feng C; Chen N; Zhang D; Hou T; Dai J; Hao C; Mao B Chemosphere; 2019 Jan; 215():142-152. PubMed ID: 30316156 [TBL] [Abstract][Full Text] [Related]
46. Fluidized-bed denitrification for mine waters. Part II: effects of Ni and Co. Zou G; Papirio S; Ylinen A; Di Capua F; Lakaniemi AM; Puhakka JA Biodegradation; 2014 Jun; 25(3):417-23. PubMed ID: 24166158 [TBL] [Abstract][Full Text] [Related]
47. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. Zhang Y; Zhong F; Xia S; Wang X; Li J J Hazard Mater; 2009 Oct; 170(1):203-9. PubMed ID: 19473764 [TBL] [Abstract][Full Text] [Related]
48. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Zhang P; Van Nostrand JD; He Z; Chakraborty R; Deng Y; Curtis D; Fields MW; Hazen TC; Arkin AP; Zhou J Environ Sci Technol; 2015 Nov; 49(21):12922-31. PubMed ID: 25835088 [TBL] [Abstract][Full Text] [Related]
49. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor. Daniel LM; Pozzi E; Foresti E; Chinalia FA Bioresour Technol; 2009 Feb; 100(3):1100-7. PubMed ID: 18793833 [TBL] [Abstract][Full Text] [Related]
50. Nitrate removal in aquariums by immobilized pseudomonas. Tal Y; Nussinovitch A; van Rijn J Biotechnol Prog; 2003; 19(3):1019-21. PubMed ID: 12790671 [TBL] [Abstract][Full Text] [Related]
51. Efficient electrochemically active biofilm denitrification and bacteria consortium analysis. Cong Y; Xu Q; Feng H; Shen D Bioresour Technol; 2013 Mar; 132():24-7. PubMed ID: 23395754 [TBL] [Abstract][Full Text] [Related]
52. Effect of Chlorella sorokiniana on the biological denitrification of drinking water. Petrovič A; Simonič M Environ Sci Pollut Res Int; 2015 Apr; 22(7):5171-83. PubMed ID: 25348363 [TBL] [Abstract][Full Text] [Related]
54. Biodegradation of p-cresol and sulfide removal by a marine-denitrifying consortium. Meza-Escalante ER; Alvarez LH; Serrano D; Mendoza E; Bonola R J Basic Microbiol; 2015 Feb; 55(2):180-5. PubMed ID: 25418931 [TBL] [Abstract][Full Text] [Related]
55. The role of a hybrid phytosystem in landscape water purification and herbicides removal. Kirumba G; Ge L; Wei D; Xu C; He Y; Zhang B; Jiang C; Mao F Water Sci Technol; 2015; 72(11):2052-61. PubMed ID: 26606100 [TBL] [Abstract][Full Text] [Related]
56. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate. Takahashi M; Yamada T; Tanno M; Tsuji H; Hiraishi A Microbes Environ; 2011; 26(3):212-9. PubMed ID: 21558675 [TBL] [Abstract][Full Text] [Related]
57. Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics. Ebrahimi S; Nguyen TH; Roberts DJ Water Res; 2015 Oct; 83():345-53. PubMed ID: 26188598 [TBL] [Abstract][Full Text] [Related]
58. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal. Ucar D; Cokgor EU; Sahinkaya E Environ Technol; 2016; 37(2):183-91. PubMed ID: 26102288 [TBL] [Abstract][Full Text] [Related]
59. Fluidized-bed denitrification for mine waters. Part I: low pH and temperature operation. Papirio S; Ylinen A; Zou G; Peltola M; Esposito G; Puhakka JA Biodegradation; 2014 Jun; 25(3):425-35. PubMed ID: 24166159 [TBL] [Abstract][Full Text] [Related]
60. Characterization of the anaerobic denitrification bacterium Acinetobacter sp. SZ28 and its application for groundwater treatment. Su Jf; Zheng SC; Huang Tl; Ma F; Shao SC; Yang SF; Zhang Ln Bioresour Technol; 2015 Sep; 192():654-9. PubMed ID: 26094190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]