These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23321665)
61. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment. Morita M; Uemoto H; Watanabe A Biotechnol Bioeng; 2007 Aug; 97(6):1439-47. PubMed ID: 17252606 [TBL] [Abstract][Full Text] [Related]
62. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor. Dhamole PB; Nair RR; D'Souza SF; Pandit AB; Lele SS Appl Biochem Biotechnol; 2015 Jan; 175(2):748-56. PubMed ID: 25342265 [TBL] [Abstract][Full Text] [Related]
63. Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. Cui H; Feng Y; Yin Z; Qu K; Wang L; Li J; Jin T; Bai Y; Cui Z Ecotoxicol Environ Saf; 2023 Apr; 255():114791. PubMed ID: 36934547 [TBL] [Abstract][Full Text] [Related]
64. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers. Feng L; Chen K; Han D; Zhao J; Lu Y; Yang G; Mu J; Zhao X Bioresour Technol; 2017 Jan; 224():236-245. PubMed ID: 27843089 [TBL] [Abstract][Full Text] [Related]
65. [Study on sulfur-based autotrophic denitrification with different electron donors]. Yuan Y; Zhou WL; Wang H; He SB Huan Jing Ke Xue; 2013 May; 34(5):1835-44. PubMed ID: 23914536 [TBL] [Abstract][Full Text] [Related]
66. Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater. Schipper LA; Barkle GF; Hadfield JC; Vojvodic-Vukovic M; Burgess CP J Contam Hydrol; 2004 Apr; 69(3-4):263-79. PubMed ID: 15028394 [TBL] [Abstract][Full Text] [Related]
67. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer. Critchley K; Rudolph DL; Devlin JF; Schillig PC J Contam Hydrol; 2014 Dec; 171():66-80. PubMed ID: 25461888 [TBL] [Abstract][Full Text] [Related]
68. Tracing the role of endogenous carbon in denitrification using wine industry by-product as an external electron donor: Coupling isotopic tools with mathematical modeling. Carrey R; Rodríguez-Escales P; Soler A; Otero N J Environ Manage; 2018 Feb; 207():105-115. PubMed ID: 29154003 [TBL] [Abstract][Full Text] [Related]
69. [Study on aerobic denitrification in BAF]. Deng K; Huang SB; Hu T Huan Jing Ke Xue; 2010 Dec; 31(12):2945-9. PubMed ID: 21360884 [TBL] [Abstract][Full Text] [Related]
70. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Wan D; Liu H; Qu J; Lei P; Xiao S; Hou Y Bioresour Technol; 2009 Jan; 100(1):142-8. PubMed ID: 18619837 [TBL] [Abstract][Full Text] [Related]
71. Characteristics of nitrate removal in a bio-ceramsite reactor by aerobic denitrification. Chen D; Yang K; Wang H; Lv B; Ma F Environ Technol; 2015; 36(9-12):1457-63. PubMed ID: 25441228 [TBL] [Abstract][Full Text] [Related]
72. [Biocatalyst of redox mediators on the denitrification by Paracoccus versutus strain GW1]. Li HB; Lian J; Guo YK; Zhao LJ; Du HF; Yang JL; Guo JB Huan Jing Ke Xue; 2012 Jul; 33(7):2458-63. PubMed ID: 23002627 [TBL] [Abstract][Full Text] [Related]
73. Bacterial communities in a bioelectrochemical denitrification system: the effects of supplemental electron acceptors. Kondaveeti S; Lee SH; Park HD; Min B Water Res; 2014 Mar; 51():25-36. PubMed ID: 24388828 [TBL] [Abstract][Full Text] [Related]
74. Biological nitrate removal from wastewater of a metal-finishing industry. Gabaldón C; Izquierdo M; Martínez-Soria V; Marzal P; Penya-Roja JM; Javier Alvarez-Hornos F J Hazard Mater; 2007 Sep; 148(1-2):485-90. PubMed ID: 17416463 [TBL] [Abstract][Full Text] [Related]
75. New contributions to the ORP & DO time profile characterization to improve biological nutrient removal. Martín de la Vega PT; Martínez de Salazar E; Jaramillo MA; Cros J Bioresour Technol; 2012 Jun; 114():160-7. PubMed ID: 22483572 [TBL] [Abstract][Full Text] [Related]
76. Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source. Poutiainen H; Laitinen S; Pradhan S; Pessi M; Heinonen-Tanski H Environ Technol; 2010 May; 31(6):617-23. PubMed ID: 20540423 [TBL] [Abstract][Full Text] [Related]
77. Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor. Beliavski M; Meerovich I; Tarre S; Green M Water Sci Technol; 2010; 61(4):911-7. PubMed ID: 20182069 [TBL] [Abstract][Full Text] [Related]
78. Improvement of water quality through biological denitrification. Shivran HS; Kumar D; Singh RV J Environ Sci Eng; 2006 Jan; 48(1):57-60. PubMed ID: 17913203 [TBL] [Abstract][Full Text] [Related]
79. Modeling nitrate-nitrogen removal process in first-flush reactor for stormwater treatment. Deng Z; Sun S; Gang DD Bioprocess Biosyst Eng; 2012 Aug; 35(6):865-74. PubMed ID: 22203267 [TBL] [Abstract][Full Text] [Related]
80. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation. Li Q; Huang B; Chen X; Shi Y Water Res; 2015 May; 75():33-42. PubMed ID: 25746960 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]