These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23321853)
1. Selective and ATP-driven transport of ions across supported membranes into nanoporous carriers using gramicidin A and ATP synthase. Oliynyk V; Mille C; Ng JB; von Ballmoos C; Corkery RW; Bergström L Phys Chem Chem Phys; 2013 Feb; 15(8):2733-40. PubMed ID: 23321853 [TBL] [Abstract][Full Text] [Related]
2. Nanopore-spanning lipid bilayers on silicon nitride membranes that seal and selectively transport ions. Korman CE; Megens M; Ajo-Franklin CM; Horsley DA Langmuir; 2013 Apr; 29(14):4421-5. PubMed ID: 23528109 [TBL] [Abstract][Full Text] [Related]
3. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels. Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061 [TBL] [Abstract][Full Text] [Related]
4. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport. Lundgren A; Hedlund J; Andersson O; Brändén M; Kunze A; Elwing H; Höök F Anal Chem; 2011 Oct; 83(20):7800-6. PubMed ID: 21877702 [TBL] [Abstract][Full Text] [Related]
5. Gramicidin D conformation, dynamics and membrane ion transport. Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797 [TBL] [Abstract][Full Text] [Related]
6. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. Laredo T; Dutcher JR; Lipkowski J Langmuir; 2011 Aug; 27(16):10072-87. PubMed ID: 21707110 [TBL] [Abstract][Full Text] [Related]
7. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity. Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836 [TBL] [Abstract][Full Text] [Related]
8. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes. Alaouie AM; Lewis RN; McElhaney RN Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes. Kubota S; Shirai O; Kitazumi Y; Kano K Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564 [TBL] [Abstract][Full Text] [Related]
10. Proton Logic Gate Based on a Gramicidin-ATP Synthase Integrated Biotransducer. Chen Y; Méhes G; Liu B; Gao L; Cui M; Lin C; Hirono-Hara Y; Hara KY; Mitome N; Miyake T ACS Appl Mater Interfaces; 2024 Feb; 16(6):7480-7488. PubMed ID: 38295806 [TBL] [Abstract][Full Text] [Related]
11. Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Atanasov V; Knorr N; Duran RS; Ingebrandt S; Offenhäusser A; Knoll W; Köper I Biophys J; 2005 Sep; 89(3):1780-8. PubMed ID: 16127170 [TBL] [Abstract][Full Text] [Related]
12. Electric field effects on membranes: gramicidin A as a test ground. Siu SW; Böckmann RA J Struct Biol; 2007 Mar; 157(3):545-56. PubMed ID: 17116406 [TBL] [Abstract][Full Text] [Related]
13. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins. Davis RW; Flores A; Barrick TA; Cox JM; Brozik SM; Lopez GP; Brozik JA Langmuir; 2007 Mar; 23(7):3864-72. PubMed ID: 17315891 [TBL] [Abstract][Full Text] [Related]
14. Optical detection of ion-channel-induced proton transport in supported phospholipid bilayers. Yang TH; Yee CK; Amweg ML; Singh S; Kendall EL; Dattelbaum AM; Shreve AP; Brinker CJ; Parikh AN Nano Lett; 2007 Aug; 7(8):2446-51. PubMed ID: 17629349 [TBL] [Abstract][Full Text] [Related]
15. Do sterols reduce proton and sodium leaks through lipid bilayers? Haines TH Prog Lipid Res; 2001 Jul; 40(4):299-324. PubMed ID: 11412894 [TBL] [Abstract][Full Text] [Related]
16. Second harmonic studies of ions crossing liposome membranes in real time. Liu J; Subir M; Nguyen K; Eisenthal KB J Phys Chem B; 2008 Dec; 112(48):15263-6. PubMed ID: 18989915 [TBL] [Abstract][Full Text] [Related]
17. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension]. Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912 [TBL] [Abstract][Full Text] [Related]
18. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport. Zharov I; Khabibullin A Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245 [TBL] [Abstract][Full Text] [Related]
19. Voltammetric study on ion transport across a bilayer lipid membrane in the presence of a hydrophobic ion or an ionophore. Shirai O; Yoshida Y; Kihara S Anal Bioanal Chem; 2006 Oct; 386(3):494-505. PubMed ID: 16847627 [TBL] [Abstract][Full Text] [Related]
20. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors. Sharma MK; Gilchrist ML Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]