These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 23321998)
1. A new method of diaphragm apex motion detection from 2D projection images of mega-voltage cone beam CT. Chen M; Bai J; Siochi RA Phys Med Biol; 2013 Feb; 58(3):715-33. PubMed ID: 23321998 [TBL] [Abstract][Full Text] [Related]
2. Diaphragm motion quantification in megavoltage cone-beam CT projection images. Chen M; Siochi RA Med Phys; 2010 May; 37(5):2312-20. PubMed ID: 20527565 [TBL] [Abstract][Full Text] [Related]
3. Motion-compensated mega-voltage cone beam CT using the deformation derived directly from 2D projection images. Chen M; Cao K; Zheng Y; Siochi RA IEEE Trans Med Imaging; 2013 Aug; 32(8):1365-75. PubMed ID: 23247845 [TBL] [Abstract][Full Text] [Related]
4. Lung diaphragm tracking in CBCT images using spatio-temporal MRF. Sundarapandian M; Kalpathi R; Siochi RA; Kadam AS Comput Med Imaging Graph; 2016 Oct; 53():9-18. PubMed ID: 27471097 [TBL] [Abstract][Full Text] [Related]
5. A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections. Wei J; Chao M Phys Med; 2018 Feb; 46():7-15. PubMed ID: 29519412 [TBL] [Abstract][Full Text] [Related]
6. Real-time direct diaphragm tracking using kV imaging on a standard linear accelerator. Hindley N; Keall P; Booth J; Shieh CC Med Phys; 2019 Oct; 46(10):4481-4489. PubMed ID: 31356690 [TBL] [Abstract][Full Text] [Related]
7. 3D lung tumor motion model extraction from 2D projection images of mega-voltage cone beam CT via optimal graph search. Chen M; Bai J; Zheng Y; Siochi RA Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):239-46. PubMed ID: 23285557 [TBL] [Abstract][Full Text] [Related]
8. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode. Reitz B; Gayou O; Parda DS; Miften M Phys Med Biol; 2008 Feb; 53(4):823-36. PubMed ID: 18263943 [TBL] [Abstract][Full Text] [Related]
9. A novel metal artifact reducing method for cone-beam CT based on three approximately orthogonal projections. Wang Q; Li L; Zhang L; Chen Z; Kang K Phys Med Biol; 2013 Jan; 58(1):1-17. PubMed ID: 23221023 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy. Shieh CC; Caillet V; Dunbar M; Keall PJ; Booth JT; Hardcastle N; Haddad C; Eade T; Feain I Phys Med Biol; 2017 Apr; 62(8):3065-3080. PubMed ID: 28323642 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Hassan B; van der Stelt P; Sanderink G Eur J Orthod; 2009 Apr; 31(2):129-34. PubMed ID: 19106265 [TBL] [Abstract][Full Text] [Related]
12. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging. Anas EM; Kim JG; Lee SY; Hasan MK Phys Med Biol; 2011 Oct; 56(19):6495-519. PubMed ID: 21934193 [TBL] [Abstract][Full Text] [Related]
13. A novel markerless technique to evaluate daily lung tumor motion based on conventional cone-beam CT projection data. Yang Y; Zhong Z; Guo X; Wang J; Anderson J; Solberg T; Mao W Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):e749-56. PubMed ID: 22330989 [TBL] [Abstract][Full Text] [Related]
14. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections. Bertholet J; Wan H; Toftegaard J; Schmidt ML; Chotard F; Parikh PJ; Poulsen PR Phys Med Biol; 2017 Feb; 62(4):1327-1341. PubMed ID: 28114115 [TBL] [Abstract][Full Text] [Related]
15. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm. Pokhrel D; Murphy MJ; Todor DA; Weiss E; Williamson JF Med Phys; 2011 Feb; 38(2):1070-80. PubMed ID: 21452744 [TBL] [Abstract][Full Text] [Related]
16. Motion analysis comparing surface imaging and diaphragm tracking on kV projections for deep inspiration breath hold (DIBH). Chen M; Chiu T; Folkert MR; Timmerman R; Gu X; Lu W; Parsons D Phys Med; 2024 Sep; 125():104495. PubMed ID: 39098107 [TBL] [Abstract][Full Text] [Related]
17. Quantification of the variability of diaphragm motion and implications for treatment margin construction. Rit S; van Herk M; Zijp L; Sonke JJ Int J Radiat Oncol Biol Phys; 2012 Mar; 82(3):e399-407. PubMed ID: 22284036 [TBL] [Abstract][Full Text] [Related]
19. A method to estimate mean position, motion magnitude, motion correlation, and trajectory of a tumor from cone-beam CT projections for image-guided radiotherapy. Poulsen PR; Cho B; Keall PJ Int J Radiat Oncol Biol Phys; 2008 Dec; 72(5):1587-96. PubMed ID: 19028282 [TBL] [Abstract][Full Text] [Related]
20. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration. Becker N; Smith WL; Quirk S; Kay I Phys Med Biol; 2010 Dec; 55(24):7439-52. PubMed ID: 21098915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]