BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 23322026)

  • 21. Graphene in Photocatalysis: A Review.
    Li X; Yu J; Wageh S; Al-Ghamdi AA; Xie J
    Small; 2016 Dec; 12(48):6640-6696. PubMed ID: 27805773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles.
    Xiang Q; Yu J; Jaroniec M
    J Am Chem Soc; 2012 Apr; 134(15):6575-8. PubMed ID: 22458309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-Based Photocatalysts for Solar-Fuel Generation.
    Xiang Q; Cheng B; Yu J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11350-66. PubMed ID: 26079429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances.
    Wang H; Zhang L; Chen Z; Hu J; Li S; Wang Z; Liu J; Wang X
    Chem Soc Rev; 2014 Aug; 43(15):5234-44. PubMed ID: 24841176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst.
    Zhang N; Liu S; Xu YJ
    Nanoscale; 2012 Apr; 4(7):2227-38. PubMed ID: 22362188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.
    Yuan YJ; Lu HW; Yu ZT; Zou ZG
    ChemSusChem; 2015 Dec; 8(24):4113-27. PubMed ID: 26586523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO-graphene oxide nanocomposites.
    Zhang L; Du L; Yu X; Tan S; Cai X; Yang P; Gu Y; Mai W
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3623-9. PubMed ID: 24548106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts.
    Bai S; Yang L; Wang C; Lin Y; Lu J; Jiang J; Xiong Y
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14810-4. PubMed ID: 26463828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.
    Jiang J; Li H; Zhang L
    Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Semiconductor-Graphene and Semiconductor-Ferroelectric/Ferromagnetic Nanoheterostructures for Efficient Hydrogen Generation and Environmental Remediation.
    Singh S; Faraz M; Khare N
    ACS Omega; 2020 Jun; 5(21):11874-11882. PubMed ID: 32548366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MoS
    Balan B; Xavier MM; Mathew S
    ACS Omega; 2023 Jul; 8(29):25649-25673. PubMed ID: 37521597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in Photocatalytic Energy Generation and Pollutants Degradation.
    Han W; Li Z; Li Y; Fan X; Zhang F; Zhang G; Peng W
    Front Chem; 2017; 5():84. PubMed ID: 29164101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Stacked Photocatalyst Design Enables Spatially Separated Ni(OH)
    Liu Q; Wang S; Mo W; Zheng Y; Xu Y; Yang G; Zhong S; Ma J; Liu D; Bai S
    Small; 2022 Mar; 18(9):e2104681. PubMed ID: 34914177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional semiconductor transition metal based chalcogenide based heterostructures for water splitting applications.
    Sumesh CK; Peter SC
    Dalton Trans; 2019 Sep; 48(34):12772-12802. PubMed ID: 31411204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe2 O3 -TiO2 nanocomposites for enhanced charge separation and photocatalytic activity.
    Moniz SJ; Shevlin SA; An X; Guo ZX; Tang J
    Chemistry; 2014 Nov; 20(47):15571-9. PubMed ID: 25280047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven photocatalytic CO
    Huang S; Yi H; Zhang L; Jin Z; Long Y; Zhang Y; Liao Q; Na J; Cui H; Ruan S; Yamauchi Y; Wakihara T; Kaneti YV; Zeng YJ
    J Hazard Mater; 2020 Jul; 393():122324. PubMed ID: 32135361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Black Phosphorus-Based Semiconductor Heterojunctions for Photocatalytic Water Splitting.
    Liu F; Huang C; Liu CX; Shi R; Chen Y
    Chemistry; 2020 Apr; 26(20):4449-4460. PubMed ID: 31710131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach.
    Yang MQ; Weng B; Xu YJ
    Langmuir; 2013 Aug; 29(33):10549-58. PubMed ID: 23889681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic Enhancement Strategy with the Introduction of Metallic Bi: A Review on Bi/Semiconductor Photocatalysts.
    Song Y; Bao Z; Gu Y
    Chem Rec; 2024 Mar; 24(3):e202300307. PubMed ID: 38084448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water.
    Zhang J; Wang P; Sun J; Jin Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19905-13. PubMed ID: 25369420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.