These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 23322026)

  • 41. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.
    Liu B; Zhao X; Terashima C; Fujishima A; Nakata K
    Phys Chem Chem Phys; 2014 May; 16(19):8751-60. PubMed ID: 24675975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integration of [(Co(bpy)₃]²⁺ electron mediator with heterogeneous photocatalysts for CO₂ conversion.
    Lin J; Hou Y; Zheng Y; Wang X
    Chem Asian J; 2014 Sep; 9(9):2468-74. PubMed ID: 24986767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Covalent Organic Framework-Semiconductor-Based Heterostructures for Photocatalytic Applications.
    Chen K; Cai A; Li TT
    ChemSusChem; 2023 May; 16(10):e202300021. PubMed ID: 36799094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solar-Driven Sustainability: III-V Semiconductor for Green Energy Production Technologies.
    Chandran B; Oh JK; Lee SW; Um DY; Kim SU; Veeramuthu V; Park JS; Han S; Lee CR; Ra YH
    Nanomicro Lett; 2024 Jul; 16(1):244. PubMed ID: 38990425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst.
    Han L; Wang P; Dong S
    Nanoscale; 2012 Sep; 4(19):5814-25. PubMed ID: 22910810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A facile one-step solvothermal synthesis of bismuth phosphate-graphene nanocomposites with enhanced photocatalytic activity.
    Wang C; Zhang G; Zhang C; Wu M; Yan M; Fan W; Shi W
    J Colloid Interface Sci; 2014 Dec; 435():156-63. PubMed ID: 25259660
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Research progress in metal sulfides for photocatalysis: From activity to stability.
    Zhang S; Ou X; Xiang Q; Carabineiro SAC; Fan J; Lv K
    Chemosphere; 2022 Sep; 303(Pt 2):135085. PubMed ID: 35618060
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene-based semiconductor photocatalysts.
    Xiang Q; Yu J; Jaroniec M
    Chem Soc Rev; 2012 Jan; 41(2):782-96. PubMed ID: 21853184
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing the semiconductor-metal-single-atom interaction for photocatalytic reactivity.
    Zhou P; Luo M; Guo S
    Nat Rev Chem; 2022 Nov; 6(11):823-838. PubMed ID: 37118099
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoinduced
    Li N; Yan W; Niu Y; Qu S; Zuo P; Bai H; Zhao N
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9838-9845. PubMed ID: 33595271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution.
    Xing J; Chen JF; Li YH; Yuan WT; Zhou Y; Zheng LR; Wang HF; Hu P; Wang Y; Zhao HJ; Wang Y; Yang HG
    Chemistry; 2014 Feb; 20(8):2138-44. PubMed ID: 24403011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copper Sulfide Based Heterojunctions as Photocatalysts for Dyes Photodegradation.
    Isac L; Cazan C; Enesca A; Andronic L
    Front Chem; 2019; 7():694. PubMed ID: 31709227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.
    Yu J; Wang K; Xiao W; Cheng B
    Phys Chem Chem Phys; 2014 Jun; 16(23):11492-501. PubMed ID: 24801641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchical photocatalysts.
    Li X; Yu J; Jaroniec M
    Chem Soc Rev; 2016 May; 45(9):2603-36. PubMed ID: 26963902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO
    Li R; Zhang W; Zhou K
    Adv Mater; 2018 Aug; 30(35):e1705512. PubMed ID: 29894012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailoring photocatalytic nanostructures for sustainable hydrogen production.
    Cargnello M; Diroll BT
    Nanoscale; 2014 Jan; 6(1):97-105. PubMed ID: 24240274
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon.
    Han C; Yang MQ; Weng B; Xu YJ
    Phys Chem Chem Phys; 2014 Aug; 16(32):16891-903. PubMed ID: 25012572
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water.
    Awate SV; Deshpande SS; Rakesh K; Dhanasekaran P; Gupta NM
    Phys Chem Chem Phys; 2011 Jun; 13(23):11329-39. PubMed ID: 21552605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergetic effect of dual cocatalysts in photocatalytic H₂ production on Pd-IrOx/TiO₂: a new insight into dual cocatalyst location.
    Ma Y; Chong R; Zhang F; Xu Q; Shen S; Han H; Li C
    Phys Chem Chem Phys; 2014 Sep; 16(33):17734-42. PubMed ID: 25030604
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lattice Engineering on Metal Cocatalysts for Enhanced Photocatalytic Reduction of CO
    Zhao L; Ye F; Wang D; Cai X; Meng C; Xie H; Zhang J; Bai S
    ChemSusChem; 2018 Oct; 11(19):3524-3533. PubMed ID: 30030919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.