These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23322048)

  • 1. Interaction imaging with amplitude-dependence force spectroscopy.
    Platz D; Forchheimer D; Tholén EA; Haviland DB
    Nat Commun; 2013; 4():1360. PubMed ID: 23322048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Functional Imaging of Interfaces through Atomic Force Microscopy Using Harmonic Mixing.
    Garrett JL; Leite MS; Munday JN
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28850-28859. PubMed ID: 30113805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
    Deng W; Zhang GM; Murphy MF; Lilley F; Harvey DM; Burton DR
    Microsc Res Tech; 2015 Oct; 78(10):935-46. PubMed ID: 26303510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polynomial force approximations and multifrequency atomic force microscopy.
    Platz D; Forchheimer D; Tholén EA; Haviland DB
    Beilstein J Nanotechnol; 2013; 4():352-60. PubMed ID: 23844340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of tip-sample interaction measurements using dynamic atomic force microscopy techniques: Dependence on oscillation amplitude, interaction strength, and tip-sample distance.
    Dagdeviren OE; Schwarz UD
    Rev Sci Instrum; 2019 Mar; 90(3):033707. PubMed ID: 30927822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.
    Biczysko P; Dzierka A; Jóźwiak G; Rudek M; Gotszalk T; Janus P; Grabiec P; Rangelow IW
    Ultramicroscopy; 2018 Jan; 184(Pt A):199-208. PubMed ID: 28950210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of nonlinear dynamics in quantitative atomic force microscopy.
    Platz D; Forchheimer D; Tholén EA; Haviland DB
    Nanotechnology; 2012 Jul; 23(26):265705. PubMed ID: 22699717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving accuracy of sample surface topography by atomic force microscopy.
    Xu M; Fujita D; Onishi K; Miyazawa K
    J Nanosci Nanotechnol; 2009 Oct; 9(10):6003-7. PubMed ID: 19908487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids: topography and material contrast.
    Almonte L; Colchero J
    Nanoscale; 2017 Feb; 9(8):2903-2915. PubMed ID: 28181615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.
    Altman EI; Baykara MZ; Schwarz UD
    Acc Chem Res; 2015 Sep; 48(9):2640-8. PubMed ID: 26301490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants.
    Gulati K; Adachi T
    Acta Biomater; 2023 Oct; 170():15-38. PubMed ID: 37562516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy.
    Killgore JP; Hurley DC
    Nanotechnology; 2012 Feb; 23(5):055702. PubMed ID: 22236758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.
    Hu S; Raman A
    Nanotechnology; 2008 Sep; 19(37):375704. PubMed ID: 21832558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.
    Martínez NF; García R
    Nanotechnology; 2006 Apr; 17(7):S167-72. PubMed ID: 21727409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the AFM Sensor by a Precisely Regulated Air Stream to Increase Imaging Speed and Accuracy in the Contact Mode.
    Dzedzickis A; Bucinskas V; Viržonis D; Sesok N; Ulcinas A; Iljin I; Sutinys E; Petkevicius S; Gargasas J; Morkvenaite-Vilkonciene I
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.
    Vahdat V; Grierson DS; Turner KT; Carpick RW
    ACS Nano; 2013 Apr; 7(4):3221-35. PubMed ID: 23506316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-MHz micro-electro-mechanical sensors for atomic force microscopy.
    Legrand B; Salvetat JP; Walter B; Faucher M; Théron D; Aimé JP
    Ultramicroscopy; 2017 Apr; 175():46-57. PubMed ID: 28110263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique.
    Katan AJ; van Es MH; Oosterkamp TH
    Nanotechnology; 2009 Apr; 20(16):165703. PubMed ID: 19420576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.