These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23322102)

  • 1. Monitoring ion activities in and around cells using ion-selective liquid-membrane microelectrodes.
    Lee SK; Boron WF; Parker MD
    Sensors (Basel); 2013 Jan; 13(1):984-1003. PubMed ID: 23322102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants.
    Miller AJ; Cookson SJ; Smith SJ; Wells DM
    J Exp Bot; 2001 Apr; 52(356):541-9. PubMed ID: 11373303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of extracellular ion fluxes using the ion-selective self-referencing microelectrode technique.
    Luxardi G; Reid B; Ferreira F; Maillard P; Zhao M
    J Vis Exp; 2015 May; (99):e52782. PubMed ID: 25993490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring intracellular ion concentrations with multi-barrelled microelectrodes.
    Miller AJ; Smith S
    Methods Mol Biol; 2012; 913():67-77. PubMed ID: 22895752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved Na+-selective microelectrode for intracellular measurements in plant cells.
    Carden DE; Diamond D; Miller AJ
    J Exp Bot; 2001 Jun; 52(359):1353-9. PubMed ID: 11432954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time measurement of cytoplasmic ions with ion-selective microelectrodes.
    Miller AJ
    Methods Mol Biol; 2013; 953():243-54. PubMed ID: 23073888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Ion-selective microelectrodes for intracellular measurements].
    Yano T; Nishi K
    Nihon Yakurigaku Zasshi; 1993 Oct; 102(4):271-7. PubMed ID: 8253431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-selective microelectrodes: theory and technique.
    Armstrong WM; Garcia-Diaz JF
    Fed Proc; 1980 Sep; 39(11):2851-9. PubMed ID: 7409206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming the problem of non-ideal liquid ion exchanger selectivity in microelectrode ion flux measurements.
    Knowles A; Shabala S
    J Membr Biol; 2004 Nov; 202(1):51-9. PubMed ID: 15702379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.
    Musa-Aziz R; Boron WF; Parker MD
    Methods; 2010 May; 51(1):134-45. PubMed ID: 20051266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes.
    Jayakannan M; Babourina O; Rengel Z
    J Plant Physiol; 2011 Jul; 168(10):1045-51. PubMed ID: 21256620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive microelectrode ion flux estimation technique (MIFE) for the study of the regulation of root membrane transport by cyclic nucleotides.
    Ordoñez NM; Shabala L; Gehring C; Shabala S
    Methods Mol Biol; 2013; 1016():95-106. PubMed ID: 23681574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an array of ion-selective microelectrodes aimed for the monitoring of extracellular ionic activities.
    Guenat OT; Generelli S; de Rooij NF; Koudelka-Hep M; Berthiaume F; Yarmush ML
    Anal Chem; 2006 Nov; 78(21):7453-60. PubMed ID: 17073412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function.
    Newman IA
    Plant Cell Environ; 2001 Jan; 24(1):1-14. PubMed ID: 11762438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New double-barreled, ion-sensitive microelectrodes for measuring intracellular Cl- activities in rabbit renal collecting ducts.
    Kondo Y; Igarashi Y; Abe K; Tada K
    Tohoku J Exp Med; 1993 Jan; 169(1):51-8. PubMed ID: 8211969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipodal Tetraamide Derivatives of 1,10-Diaza-18-Crown-6 and Alkylmalonic Acids-Synthesis and Use as Ionophores in Ion Selective Membrane Electrodes.
    Pomećko R; Luboch E; Jeszke M
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new double-barrelled, ionophore-based microelectrode for chloride ions.
    Kondo Y; Bührer T; Seiler K; Frömter E; Simon W
    Pflugers Arch; 1989 Sep; 414(6):663-8. PubMed ID: 2813044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, calibration and evaluation of a phosphate ion-selective microelectrode.
    Wang JJ; Bishop PL
    Environ Pollut; 2010 Dec; 158(12):3612-7. PubMed ID: 20851510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective coulometric release of ions from ion selective polymeric membranes for calibration-free titrations.
    Bhakthavatsalam V; Shvarev A; Bakker E
    Analyst; 2006 Aug; 131(8):895-900. PubMed ID: 17028722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of ionophores for ion-selective microsensors.
    Ammann D; Oesch U; Bührer T; Simon W
    Can J Physiol Pharmacol; 1987 May; 65(5):879-84. PubMed ID: 3304589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.