These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23322133)
1. Aggregation and chemical modification of monoclonal antibodies under upstream processing conditions. Dengl S; Wehmer M; Hesse F; Lipsmeier F; Popp O; Lang K Pharm Res; 2013 May; 30(5):1380-99. PubMed ID: 23322133 [TBL] [Abstract][Full Text] [Related]
2. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Ishikawa T; Ito T; Endo R; Nakagawa K; Sawa E; Wakamatsu K Biol Pharm Bull; 2010; 33(8):1413-7. PubMed ID: 20686240 [TBL] [Abstract][Full Text] [Related]
3. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. Neergaard MS; Nielsen AD; Parshad H; Van De Weert M J Pharm Sci; 2014 Jan; 103(1):115-27. PubMed ID: 24282022 [TBL] [Abstract][Full Text] [Related]
4. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Ito T; Tsumoto K Protein Sci; 2013 Nov; 22(11):1542-51. PubMed ID: 23963869 [TBL] [Abstract][Full Text] [Related]
5. Secretory leakage of IgG1 aggregates from recombinant Chinese hamster ovary cells. Onitsuka M; Kadoya Y; Omasa T J Biosci Bioeng; 2019 Jun; 127(6):752-757. PubMed ID: 30580968 [TBL] [Abstract][Full Text] [Related]
6. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species. Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951 [TBL] [Abstract][Full Text] [Related]
7. Cation exchange surface-mediated denaturation of an aglycosylated immunoglobulin (IgG1). Gillespie R; Nguyen T; Macneil S; Jones L; Crampton S; Vunnum S J Chromatogr A; 2012 Aug; 1251():101-110. PubMed ID: 22771262 [TBL] [Abstract][Full Text] [Related]
8. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Velugula-Yellela SR; Williams A; Trunfio N; Hsu CJ; Chavez B; Yoon S; Agarabi C Biotechnol Prog; 2018 Jan; 34(1):262-270. PubMed ID: 29086492 [TBL] [Abstract][Full Text] [Related]
9. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration. Zidar M; Šušterič A; Ravnik M; Kuzman D Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474 [TBL] [Abstract][Full Text] [Related]
10. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life. Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD MAbs; 2015; 7(1):84-95. PubMed ID: 25524268 [TBL] [Abstract][Full Text] [Related]
11. Mapping the mAb Aggregation Propensity Using Self-Interaction Chromatography as a Screening Tool. Hedberg SHM; Lee D; Mishra Y; Haigh JM; Williams DR Anal Chem; 2018 Mar; 90(6):3878-3885. PubMed ID: 29446917 [TBL] [Abstract][Full Text] [Related]
12. Understanding the relationship between biotherapeutic protein stability and solid-liquid interfacial shear in constant region mutants of IgG1 and IgG4. Tavakoli-Keshe R; Phillips JJ; Turner R; Bracewell DG J Pharm Sci; 2014 Feb; 103(2):437-44. PubMed ID: 24357426 [TBL] [Abstract][Full Text] [Related]
13. Cell culture media impact on drug product solution stability. Purdie JL; Kowle RL; Langland AL; Patel CN; Ouyang A; Olson DJ Biotechnol Prog; 2016 Jul; 32(4):998-1008. PubMed ID: 27111574 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody. Bond MD; Panek ME; Zhang Z; Wang D; Mehndiratta P; Zhao H; Gunton K; Ni A; Nedved ML; Burman S; Volkin DB J Pharm Sci; 2010 Jun; 99(6):2582-97. PubMed ID: 20039394 [TBL] [Abstract][Full Text] [Related]
15. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Arosio P; Rima S; Morbidelli M Pharm Res; 2013 Mar; 30(3):641-54. PubMed ID: 23054090 [TBL] [Abstract][Full Text] [Related]
16. Impacts on product quality attributes of monoclonal antibodies produced in CHO cell bioreactor cultures during intentional mycoplasma contamination events. Fratz-Berilla EJ; Angart P; Graham RJ; Powers DN; Mohammad A; Kohnhorst C; Faison T; Velugula-Yellela SR; Trunfio N; Agarabi C Biotechnol Bioeng; 2020 Sep; 117(9):2802-2815. PubMed ID: 32436993 [TBL] [Abstract][Full Text] [Related]
17. Purification and Analytics of a Monoclonal Antibody from Chinese Hamster Ovary Cells Using an Automated Microbioreactor System. Velugula-Yellela SR; Powers DN; Angart P; Faustino A; Faison T; Kohnhorst C; Fratz-Berilla EJ; Agarabi CD J Vis Exp; 2019 May; (147):. PubMed ID: 31107445 [TBL] [Abstract][Full Text] [Related]
18. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations. Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267 [TBL] [Abstract][Full Text] [Related]
19. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. Kiese S; Papppenberger A; Friess W; Mahler HC J Pharm Sci; 2008 Oct; 97(10):4347-66. PubMed ID: 18240293 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive Stress Stability Studies Reveal the Prominent Stability of the Liquid-Formulated Biotherapeutic Asymmetric Monovalent Bispecific IgG1 Monoclonal Antibody Format. Sankaran PK; Poskute R; Dewis L; Watanabe Y; Wong V; Fernandez LP; Shannon R; Wong L; Shrubsall R; Carman L; Holt A; Lepore G; Mishra R; Sewell L; Gothard M; Cheeks M; Lindo V J Pharm Sci; 2024 Aug; 113(8):2101-2113. PubMed ID: 38705464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]