These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23322473)

  • 1. Arsenic present in the soil-vine-wine chain in vineyards situated in an old mining area in Trentino, Italy.
    Bertoldi D; Villegas TR; Larcher R; Santato A; Nicolini G
    Environ Toxicol Chem; 2013 Apr; 32(4):773-9. PubMed ID: 23322473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead contamination in Portuguese red wines from the Douro region: from the vineyard to the final product.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 May; 51(10):3012-23. PubMed ID: 12720385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total As and As speciation from worldwide collected red wine samples.
    Vacchina V; Epova EN; Bérail S; Médina B; Donard OFX; Séby F
    Food Addit Contam Part B Surveill; 2018 Dec; 11(4):286-292. PubMed ID: 30160603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin.
    Almeida CM; Vasconcelos MT
    J Agric Food Chem; 2003 Jul; 51(16):4788-98. PubMed ID: 14705914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer of Macronutrients, Micronutrients, and Toxic Elements from Soil to Grapes to White Wines in Uncontaminated Vineyards.
    Richardson JB; Chase JK
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current Perspective on Arsenic in Wines: Analysis, Speciation, and Changes in Composition during Production.
    Tanabe CK; Nelson J; Ebeler SE
    J Agric Food Chem; 2019 Apr; 67(15):4154-4159. PubMed ID: 30896158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geographical origin of Vitis vinifera cv. Cannonau established by the index of bioaccumulation and translocation coefficients.
    Pepi S; Chicca M; Piroddi G; Tassinari R; Vaccaro C
    Environ Monit Assess; 2019 Jun; 191(7):436. PubMed ID: 31203461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace metals transfer during vine cultivation and winemaking processes.
    Vystavna Y; Zaichenko L; Klimenko N; Rätsep R
    J Sci Food Agric; 2017 Oct; 97(13):4520-4525. PubMed ID: 28332198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study.
    Sun X; Ma T; Yu J; Huang W; Fang Y; Zhan J
    Food Chem; 2018 Feb; 241():40-50. PubMed ID: 28958546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in a community with long history of gold mining in Tanzania.
    Nyanza EC; Dewey D; Thomas DS; Davey M; Ngallaba SE
    Bull Environ Contam Toxicol; 2014 Dec; 93(6):716-21. PubMed ID: 24923470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS.
    Barbaste M; Medina B; Perez-Trujillo JP
    Food Addit Contam; 2003 Feb; 20(2):141-8. PubMed ID: 12623662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content.
    Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L
    Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China.
    Liao XY; Chen TB; Xie H; Liu YR
    Environ Int; 2005 Aug; 31(6):791-8. PubMed ID: 15979720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins.
    Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA
    J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.).
    Bogdan K; Schenk MK
    Environ Pollut; 2009 Oct; 157(10):2617-21. PubMed ID: 19482396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic distribution in a pasture area impacted by past mining activities.
    Abad-Valle P; Álvarez-Ayuso E; Murciego A; Muñoz-Centeno LM; Alonso-Rojo P; Villar-Alonso P
    Ecotoxicol Environ Saf; 2018 Jan; 147():228-237. PubMed ID: 28846927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds (δ
    Spangenberg JE; Vogiatzaki M; Zufferey V
    J Chromatogr A; 2017 Sep; 1517():142-155. PubMed ID: 28851526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area.
    Álvarez-Ayuso E; Abad-Valle P; Murciego A; Villar-Alonso P
    Sci Total Environ; 2016 Jan; 542(Pt A):238-46. PubMed ID: 26519583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium isotope characterization of wines from Quebec, Canada.
    Vinciguerra V; Stevenson R; Pedneault K; Poirier A; Hélie JF; Widory D
    Food Chem; 2016 Nov; 210():121-8. PubMed ID: 27211629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.