These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23322491)

  • 1. Differential changes in the cellular composition of the developing marsupial brain.
    Seelke AM; Dooley JC; Krubitzer LA
    J Comp Neurol; 2013 Aug; 521(11):2602-20. PubMed ID: 23322491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cellular composition of the marsupial neocortex.
    Seelke AM; Dooley JC; Krubitzer LA
    J Comp Neurol; 2014 Jul; 522(10):2286-98. PubMed ID: 24414857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodelphis domestica (grey short-tailed opossum): an accessible model for studies of early neocortical development.
    Saunders NR; Adam E; Reader M; Møllgård K
    Anat Embryol (Berl); 1989; 180(3):227-36. PubMed ID: 2596703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of arginine vasopressin-like immunoreactivity in the Brazilian opossum brain.
    Iqbal J; Jacobson CD
    Brain Res Dev Brain Res; 1995 Oct; 89(1):11-32. PubMed ID: 8575082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Qin YQ; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical perineuronal nets in the gray short-tailed opossum (Monodelphis domestica): a distribution pattern contrasting with that shown in placental mammals.
    Brückner G; Härtig W; Seeger J; Rübsamen R; Reimer K; Brauer K
    Anat Embryol (Berl); 1998 Apr; 197(4):249-62. PubMed ID: 9565318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: neural response properties of V1.
    Dooley JC; Donaldson MS; Krubitzer LA
    J Neurophysiol; 2017 Feb; 117(2):566-581. PubMed ID: 27852732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization and postnatal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica.
    Doré L; Jacobson CD; Hawkes R
    J Comp Neurol; 1990 Jan; 291(3):431-49. PubMed ID: 2298942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of cells containing estrogen receptor-like immunoreactivity in the Brazilian opossum brain.
    Fox CA; Ross LR; Jacobson CD
    Brain Res Dev Brain Res; 1991 Nov; 63(1-2):209-19. PubMed ID: 1790590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of hearing in the marsupial, Monodelphis domestica, as revealed by brainstem auditory evoked potentials.
    Reimer K
    Hear Res; 1995 Dec; 92(1-2):143-50. PubMed ID: 8647737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galanin-like immunoreactivity in the adult and developing Brazilian opossum brain.
    Elmquist JK; Fox CA; Ross LR; Jacobson CD
    Brain Res Dev Brain Res; 1992 Jun; 67(2):161-79. PubMed ID: 1380900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Wang XM; Xu XM; Qin YQ; Martin GF
    Brain Res Dev Brain Res; 1992 Aug; 68(2):203-16. PubMed ID: 1382891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental anatomy of the primary olfactory pathway in the opossum Monodelphis domestica.
    Chuah MI; Tennent R; Teague R
    Histol Histopathol; 1997 Jul; 12(3):799-806. PubMed ID: 9225163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular development and evolution of the mammalian cerebellum.
    Sepp M; Leiss K; Murat F; Okonechnikov K; Joshi P; Leushkin E; Spänig L; Mbengue N; Schneider C; Schmidt J; Trost N; Schauer M; Khaitovich P; Lisgo S; Palkovits M; Giere P; Kutscher LM; Anders S; Cardoso-Moreira M; Sarropoulos I; Pfister SM; Kaessmann H
    Nature; 2024 Jan; 625(7996):788-796. PubMed ID: 38029793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental analysis of the peripheral olfactory organ of the opossum Monodelphis domestica.
    Couper Leo JM; Brunjes PC
    Brain Res Dev Brain Res; 1999 Apr; 114(1):43-8. PubMed ID: 10209241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica.
    Greenlee MH; Swanson JJ; Simon JJ; Elmquist JK; Jacobson CD; Sakaguchi DS
    Brain Res Dev Brain Res; 1996 Oct; 96(1-2):159-72. PubMed ID: 8922678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOX2 and SOX9 Expression in Developing Postnatal Opossum (
    Baričević Z; Pongrac M; Ivaničić M; Hreščak H; Tomljanović I; Petrović A; Cojoc D; Mladinic M; Ban J
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of brain extracellular matrix in the Chilean fat-tailed mouse opossum Thylamys elegans (Waterhouse, 1839).
    Brückner G; Pavlica S; Morawski M; Palacios AG; Reichenbach A
    J Chem Neuroanat; 2006 Dec; 32(2-4):143-58. PubMed ID: 16996716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An architectonic study of the neocortex of the short-tailed opossum (Monodelphis domestica).
    Wong P; Kaas JH
    Brain Behav Evol; 2009; 73(3):206-28. PubMed ID: 19546531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of oxytocin-like immunoreactivity in the Brazilian opossum brain.
    Iqbal J; Jacobson CD
    Brain Res Dev Brain Res; 1995 Dec; 90(1-2):1-16. PubMed ID: 8719325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.