These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23322646)

  • 1. Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production.
    Woodruff LB; May BL; Warner JR; Gill RT
    Biotechnol Bioeng; 2013 May; 110(5):1520-6. PubMed ID: 23322646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the feasibility of bulk commodity production in Escherichia coli.
    Vickers CE; Klein-Marcuschamer D; Krömer JO
    Biotechnol Lett; 2012 Apr; 34(4):585-96. PubMed ID: 22160295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
    Srirangan K; Liu X; Westbrook A; Akawi L; Pyne ME; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9499-515. PubMed ID: 25301579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.
    Valdehuesa KN; Liu H; Nisola GM; Chung WJ; Lee SH; Park SJ
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3309-21. PubMed ID: 23494623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium.
    Fernández-Sandoval MT; Huerta-Beristain G; Trujillo-Martinez B; Bustos P; González V; Bolivar F; Gosset G; Martinez A
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1291-300. PubMed ID: 22669633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced production of N-acetyl-D-neuraminic acid by multi-approach whole-cell biocatalyst.
    Lin BX; Zhang ZJ; Liu WF; Dong ZY; Tao Y
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4775-84. PubMed ID: 23420269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production.
    Zhou S; Iverson AG; Grayburn WS
    Biotechnol Lett; 2008 Feb; 30(2):335-42. PubMed ID: 17957344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose.
    Sanny T; Arnaldos M; Kunkel SA; Pagilla KR; Stark BC
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1103-12. PubMed ID: 20717665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.
    Park JH; Jang YS; Lee JW; Lee SY
    Biotechnol Bioeng; 2011 May; 108(5):1140-7. PubMed ID: 21191998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-engineering Escherichia coli for ethanol production.
    Yomano LP; York SW; Zhou S; Shanmugam KT; Ingram LO
    Biotechnol Lett; 2008 Dec; 30(12):2097-103. PubMed ID: 18773150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.
    Baer ZC; Bormann S; Sreekumar S; Grippo A; Toste FD; Blanch HW; Clark DS
    Biotechnol Bioeng; 2016 Oct; 113(10):2079-87. PubMed ID: 26987294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].
    Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Escherichia coli Cell Factories for n-Butanol Production.
    Dong H; Zhao C; Zhang T; Lin Z; Li Y; Zhang Y
    Adv Biochem Eng Biotechnol; 2016; 155():141-63. PubMed ID: 25662903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of phloroglucinol by Escherichia coli using a stationary-phase promoter.
    Cao Y; Xian M
    Biotechnol Lett; 2011 Sep; 33(9):1853-8. PubMed ID: 21544607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli for biofuel production: bridging the gap from promise to practice.
    Huffer S; Roche CM; Blanch HW; Clark DS
    Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production.
    Yuan Y; Bi C; Nicolaou SA; Zingaro KA; Ralston M; Papoutsakis ET
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8399-411. PubMed ID: 25173692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.
    Cotten C; Reed JL
    Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.