BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23322664)

  • 1. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF; Baycin-Hizal D; Lewis NE; Betenbaugh MJ
    Curr Opin Biotechnol; 2013 Dec; 24(6):1102-7. PubMed ID: 23523260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells.
    Mohan C; Kim YG; Koo J; Lee GM
    Biotechnol J; 2008 May; 3(5):624-30. PubMed ID: 18293320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of multi-omics techniques for bioprocess design and optimization in chinese hamster ovary cells.
    Farrell A; McLoughlin N; Milne JJ; Marison IW; Bones J
    J Proteome Res; 2014 Jul; 13(7):3144-59. PubMed ID: 24915626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.
    Huang Z; Lee DY; Yoon S
    Biotechnol Bioeng; 2017 Dec; 114(12):2717-2728. PubMed ID: 28710856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycoengineering Chinese hamster ovary cells: a short history.
    Donini R; Haslam SM; Kontoravdi C
    Biochem Soc Trans; 2021 Apr; 49(2):915-931. PubMed ID: 33704400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity.
    Dahodwala H; Sharfstein ST
    Methods Mol Biol; 2017; 1603():153-168. PubMed ID: 28493129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.
    Toussaint C; Henry O; Durocher Y
    J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system.
    Cacciatore JJ; Chasin LA; Leonard EF
    Biotechnol Adv; 2010; 28(6):673-81. PubMed ID: 20416368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic model for CHO cell engineering.
    Nolan RP; Lee K
    J Biotechnol; 2012 Mar; 158(1-2):24-33. PubMed ID: 22285956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
    Stolfa G; Smonskey MT; Boniface R; Hachmann AB; Gulde P; Joshi AD; Pierce AP; Jacobia SJ; Campbell A
    Biotechnol J; 2018 Mar; 13(3):e1700227. PubMed ID: 29072373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods in mammalian cell line engineering: from random mutagenesis to sequence-specific approaches.
    Krämer O; Klausing S; Noll T
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):425-36. PubMed ID: 20689950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.
    Popp O; Müller D; Didzus K; Paul W; Lipsmeier F; Kirchner F; Niklas J; Mauch K; Beaucamp N
    Biotechnol Bioeng; 2016 Sep; 113(9):2005-19. PubMed ID: 26913695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards dynamic metabolic flux analysis in CHO cell cultures.
    Ahn WS; Antoniewicz MR
    Biotechnol J; 2012 Jan; 7(1):61-74. PubMed ID: 22102428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.
    Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H
    Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Serum-free medium for suspension culture of recombinant Chinese hamster ovary (11G-S) cells].
    Liu X; Liu H; Ye L; Li S; Wu B; Wang H; Xie J; Chen Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1116-22. PubMed ID: 21090117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of high passage cultivation on CHO cells: a global analysis.
    Beckmann TF; Krämer O; Klausing S; Heinrich C; Thüte T; Büntemeyer H; Hoffrogge R; Noll T
    Appl Microbiol Biotechnol; 2012 May; 94(3):659-71. PubMed ID: 22331235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CHO cells in biotechnology for production of recombinant proteins: current state and further potential.
    Kim JY; Kim YG; Lee GM
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):917-30. PubMed ID: 22159888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T; Keysberg C; Otte K
    Biotechnol Adv; 2022 Oct; 59():107978. PubMed ID: 35569699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.