These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23323426)

  • 41. Reproducibility of up-flow column percolation tests for contaminated soils.
    Yasutaka T; Naka A; Sakanakura H; Kurosawa A; Inui T; Takeo M; Inoba S; Watanabe Y; Fujikawa T; Miura T; Miyaguchi S; Nakajou K; Sumikura M; Ito K; Tamoto S; Tatsuhara T; Chida T; Hirata K; Ohori K; Someya M; Katoh M; Umino M; Negishi M; Ito K; Kojima J; Ogawa S
    PLoS One; 2017; 12(6):e0178979. PubMed ID: 28582458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced retention of linuron, alachlor and metalaxyl in sandy soil columns intercalated with wood barriers.
    Rodríguez-Cruz MS; Ordax JM; Arienzo M; Sánchez-Martín MJ
    Chemosphere; 2011 Mar; 82(10):1415-21. PubMed ID: 21183199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of different amendments to stabilize antimony in mining polluted soils.
    Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A
    Chemosphere; 2013 Feb; 90(8):2233-9. PubMed ID: 23121985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil.
    Yao Y; Gao B; Zhang M; Inyang M; Zimmerman AR
    Chemosphere; 2012 Nov; 89(11):1467-71. PubMed ID: 22763330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Is colloid-facilitated phosphorus leaching triggered by phosphorus accumulation in sandy soils?
    Siemens J; Ilg K; Pagel H; Kaupenjohann M
    J Environ Qual; 2008; 37(6):2100-7. PubMed ID: 18948463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An experimental study on the bio-surfactant-assisted remediation of crude oil and salt contaminated soils.
    Zhang W; Li J; Huang G; Song W; Huang Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):306-13. PubMed ID: 21308602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Re-cycling of remediated soil--evaluation of leaching tests as tools for characterization.
    Dalgren KE; Düker A; Arwidsson Z; von Kronhelm T; van Hees PA
    Waste Manag; 2011 Feb; 31(2):215-24. PubMed ID: 20117924
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of metal-contaminated soils with the addition of materials - part II: leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils.
    González-Núñez R; Alba MD; Orta MM; Vidal M; Rigol A
    Chemosphere; 2012 May; 87(8):829-37. PubMed ID: 22326253
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil.
    Lafond S; Blais JF; Mercier G; Martel R
    Environ Technol; 2013; 34(13-16):2377-87. PubMed ID: 24350494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retardation of iron-cyanide complexes in the soil of a former manufactured gas plant site.
    Sut M; Repmann F; Raab T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(3):282-91. PubMed ID: 25594121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.
    Chen A; Lin C; Lu W; Ma Y; Bai Y; Chen H; Li J
    J Hazard Mater; 2010 Mar; 175(1-3):638-45. PubMed ID: 19913356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of processing time on removal of harmful emerging salt pollutants from saline-sodic soil during electrochemical remediation.
    Bessaim MM; Missoum H; Bendani K; Laredj N; Bekkouche MS
    Chemosphere; 2020 Aug; 253():126688. PubMed ID: 32278185
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorus leaching from biosolids-amended sandy soils.
    Elliott HA; O'Connor GA; Brinton S
    J Environ Qual; 2002; 31(2):681-9. PubMed ID: 11931462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Si-rich substances on phosphorous adsorption by sandy soils.
    Matichenkov VV; Bocharnikova EA; Pakhnenko EP; Khomiakov DM
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24311-24317. PubMed ID: 28889195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental assessment of the operative conditions of copper extraction from three contaminated soils.
    Di Palma L; Ferrantelli P; Pitzolu I
    Environ Technol; 2004 Jun; 25(6):673-80. PubMed ID: 15369287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil.
    Chen GC; He ZL; Stoffella PJ; Yang XE; Yu S; Calvert D
    Environ Pollut; 2006 Jan; 139(1):176-82. PubMed ID: 16087279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.
    Amin MM; Hatamipour MS; Momenbeik F; Nourmoradi H; Farhadkhani M; Mohammadi-Moghadam F
    ScientificWorldJournal; 2014; 2014():416752. PubMed ID: 24587723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-term leaching of rimsulfuron degradation products through sandy agricultural soils.
    Rosenbom AE; Kjaer J; Olsen P
    Chemosphere; 2010 May; 79(8):830-8. PubMed ID: 20303569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.