BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 23323444)

  • 1. [Formation of disinfection by-products: temperature effect and kinetic modeling].
    Zhang XL; Yang HW; Wang XM; Fu J; Xie YF
    Huan Jing Ke Xue; 2012 Nov; 33(11):4046-51. PubMed ID: 23323444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of disinfection by-products: effect of temperature and kinetic modeling.
    Zhang XL; Yang HW; Wang XM; Fu J; Xie YF
    Chemosphere; 2013 Jan; 90(2):634-9. PubMed ID: 23026162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
    Zhai H; He X; Zhang Y; Du T; Adeleye AS; Li Y
    Chemosphere; 2017 Aug; 181():224-231. PubMed ID: 28445816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant.
    Zhang X; Chen Z; Shen J; Zhao S; Kang J; Chu W; Zhou Y; Wang B
    Chemosphere; 2020 Mar; 242():125227. PubMed ID: 31704522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study.
    Liao P; Zhang T; Fang L; Jiang R; Wu G
    Sci Total Environ; 2022 Dec; 851(Pt 1):158115. PubMed ID: 35985588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of disinfection by-product (DBP) formation in source waters: a study using log-transformed differential spectra.
    Yan M; Korshin GV; Chang HS
    Water Res; 2014 Mar; 50():179-88. PubMed ID: 24374129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of trihalomethanes and haloacetic acids from 2,6-dichloro-1,4-benzoquinone during chlorination: Decomposition kinetics, conversion rates, and pathways.
    Zhai H; Zhao J; Wang R; Yan Y; Yu S; Zhao Y
    Chemosphere; 2022 Mar; 291(Pt 1):132729. PubMed ID: 34718017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.
    Abdullah AM; Hussona Sel-D
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7152-66. PubMed ID: 23852584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter.
    Goslan EH; Seigle C; Purcell D; Henderson R; Parsons SA; Jefferson B; Judd SJ
    Chemosphere; 2017 Mar; 170():1-9. PubMed ID: 27951445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].
    Deng Y; Wei J; E X; Wang W; et al
    Wei Sheng Yan Jiu; 2008 Mar; 37(2):207-10. PubMed ID: 18589610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes.
    Zhang Y; Zhang N; Zhao P; Niu Z
    J Environ Sci (China); 2018 Mar; 65():179-189. PubMed ID: 29548389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of DBPs and halogen-specific TOX in the presence of iopamidol and chlorinated oxidants.
    Ackerson NOB; Machek EJ; Killinger AH; Crafton EA; Kumkum P; Liberatore HK; Plewa MJ; Richardson SD; Ternes TA; Duirk SE
    Chemosphere; 2018 Jul; 202():349-357. PubMed ID: 29574388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors.
    Deeudomwongsa P; Phattarapattamawong S; Andrew Lin KY
    Chemosphere; 2017 Oct; 184():1215-1222. PubMed ID: 28672704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of iodinated trihalomethanes during chlorination of amino acid in waters.
    Li C; Lin Q; Dong F; Li Y; Luo F; Zhang K
    Chemosphere; 2019 Feb; 217():355-363. PubMed ID: 30419389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THMs, HAAs and NAs production from culturable microorganisms in pipeline network by ozonation, chlorination, chloramination and joint disinfection strategies.
    Duan X; Liao X; Chen J; Xie S; Qi H; Li F; Yuan B
    Sci Total Environ; 2020 Nov; 744():140833. PubMed ID: 32717469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-wavelength models expand the validity of DBP-differential absorbance relationships in drinking water.
    Beauchamp N; Dorea C; Bouchard C; Rodriguez M
    Water Res; 2019 Jul; 158():61-71. PubMed ID: 31015143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.