These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23323680)

  • 1. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-phase electrochemical lithiation in amorphous silicon.
    Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T
    Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM.
    Luo L; Wu J; Luo J; Huang J; Dravid VP
    Sci Rep; 2014 Jan; 4():3863. PubMed ID: 24457519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.
    Johari P; Qi Y; Shenoy VB
    Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon.
    Chon MJ; Sethuraman VA; McCormick A; Srinivasan V; Guduru PR
    Phys Rev Lett; 2011 Jul; 107(4):045503. PubMed ID: 21867019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ
    Kitada K; Pecher O; Magusin PCMM; Groh MF; Weatherup RS; Grey CP
    J Am Chem Soc; 2019 May; 141(17):7014-7027. PubMed ID: 30964666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods.
    Ghassemi H; Au M; Chen N; Heiden PA; Yassar RS
    ACS Nano; 2011 Oct; 5(10):7805-11. PubMed ID: 21902219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando Raman Spectroscopy and Synchrotron X-ray Diffraction of Lithiation/Delithiation in Silicon Nanoparticle Anodes.
    Tardif S; Pavlenko E; Quazuguel L; Boniface M; Maréchal M; Micha JS; Gonon L; Mareau V; Gebel G; Bayle-Guillemaud P; Rieutord F; Lyonnard S
    ACS Nano; 2017 Nov; 11(11):11306-11316. PubMed ID: 29111665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries.
    Wang CM; Li X; Wang Z; Xu W; Liu J; Gao F; Kovarik L; Zhang JG; Howe J; Burton DJ; Liu Z; Xiao X; Thevuthasan S; Baer DR
    Nano Lett; 2012 Mar; 12(3):1624-32. PubMed ID: 22385150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries.
    Kumar P; Berhaut CL; Zapata Dominguez D; De Vito E; Tardif S; Pouget S; Lyonnard S; Jouneau PH
    Small; 2020 Mar; 16(11):e1906812. PubMed ID: 32091177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.