BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23323842)

  • 1. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.
    Rocchetti L; Vegliò F; Kopacek B; Beolchini F
    Environ Sci Technol; 2013 Feb; 47(3):1581-8. PubMed ID: 23323842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.
    Silvas FP; Correa MM; Caldas MP; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2015 Dec; 46():503-10. PubMed ID: 26323203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching.
    Priya A; Hait S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6989-7008. PubMed ID: 28091997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes.
    Marra A; Cesaro A; Belgiorno V
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19897-19905. PubMed ID: 31090011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal recovery from high-grade WEEE: a life cycle assessment.
    Bigum M; Brogaard L; Christensen TH
    J Hazard Mater; 2012 Mar; 207-208():8-14. PubMed ID: 22115841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.
    Flandinet L; Tedjar F; Ghetta V; Fouletier J
    J Hazard Mater; 2012 Apr; 213-214():485-90. PubMed ID: 22398030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.
    Innocenzi V; De Michelis I; Ferella F; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2390-6. PubMed ID: 23831004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of pneumatic jigging in the recovery of metallic fraction from shredded printed wiring boards.
    Wang Z; Hall P; Miles NJ; Wu T; Lambert P; Gu F
    Waste Manag Res; 2015 Sep; 33(9):785-93. PubMed ID: 26070501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A device-specific prioritization strategy based on the potential for harm to human health in informal WEEE recycling.
    Cesaro A; Belgiorno V; Vaccari M; Jandric A; Chung TD; Dias MI; Hursthouse A; Salhofer S
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):683-692. PubMed ID: 29058259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): a follow-up.
    Wäger PA; Hischier R; Eugster M
    Sci Total Environ; 2011 Apr; 409(10):1746-56. PubMed ID: 21342702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review.
    He Y; Xu Z
    Waste Manag Res; 2014 Apr; 32(4):254-69. PubMed ID: 24633555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining.
    Xue M; Kendall A; Xu Z; Schoenung JM
    Environ Sci Technol; 2015 Jan; 49(2):940-7. PubMed ID: 25563893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.
    Ortuño N; Conesa JA; Moltó J; Font R
    Sci Total Environ; 2014 Nov; 499():27-35. PubMed ID: 25173859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of mechanochemistry to metal recovery from second-hand resources: a technical overview.
    Ou Z; Li J; Wang Z
    Environ Sci Process Impacts; 2015 Sep; 17(9):1522-30. PubMed ID: 26283597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.