BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23323842)

  • 21. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.
    Calgaro CO; Schlemmer DF; da Silva MD; Maziero EV; Tanabe EH; Bertuol DA
    Waste Manag; 2015 Nov; 45():289-97. PubMed ID: 26022338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A relative risk assessment of the open burning of WEEE.
    Cesaro A; Belgiorno V; Gorrasi G; Viscusi G; Vaccari M; Vinti G; Jandric A; Dias MI; Hursthouse A; Salhofer S
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11042-11052. PubMed ID: 30793245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.
    Oguchi M; Sakanakura H; Terazono A
    Sci Total Environ; 2013 Oct; 463-464():1124-32. PubMed ID: 22921510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
    Sun Z; Xiao Y; Sietsma J; Agterhuis H; Yang Y
    Environ Sci Technol; 2015 Jul; 49(13):7981-8. PubMed ID: 26061274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.
    Awasthi AK; Zeng X; Li J
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21141-21156. PubMed ID: 27678000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2015 Jul; 41():134-41. PubMed ID: 25802060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental burdens in the management of end-of-life cathode ray tubes.
    Rocchetti L; Beolchini F
    Waste Manag; 2014 Feb; 34(2):468-74. PubMed ID: 24238800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.
    Oguchi M; Sakanakura H; Terazono A; Takigami H
    Waste Manag; 2012 Jan; 32(1):96-103. PubMed ID: 21963338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Battery related cobalt and REE flows in WEEE treatment.
    Sommer P; Rotter VS; Ueberschaar M
    Waste Manag; 2015 Nov; 45():298-305. PubMed ID: 26054962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2013 May; 33(5):1251-7. PubMed ID: 23474342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Greener approach for the extraction of copper metal from electronic waste.
    Jadhao P; Chauhan G; Pant KK; Nigam KD
    Waste Manag; 2016 Nov; 57():102-112. PubMed ID: 26597372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach.
    Yaashikaa PR; Priyanka B; Senthil Kumar P; Karishma S; Jeevanantham S; Indraganti S
    Chemosphere; 2022 Jan; 287(Pt 2):132230. PubMed ID: 34826922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metallurgical recovery of metals from electronic waste: a review.
    Cui J; Zhang L
    J Hazard Mater; 2008 Oct; 158(2-3):228-56. PubMed ID: 18359555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant.
    Wäger PA; Hischier R
    Sci Total Environ; 2015 Oct; 529():158-67. PubMed ID: 26022405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hydrometallurgical process for recovering total metal values from waste monolithic ceramic capacitors.
    Prabaharan G; Barik SP; Kumar B
    Waste Manag; 2016 Jun; 52():302-8. PubMed ID: 27084106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.
    Innocenzi V; De Michelis I; Ferella F; Beolchini F; Kopacek B; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2364-71. PubMed ID: 23910246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent development of recycling lead from scrap CRTs: A technological review.
    Yu-Gong ; Tian XM; Wu YF; Zhe-Tan ; Lei-Lv
    Waste Manag; 2016 Nov; 57():176-186. PubMed ID: 26365873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental impact assessment of different end-of-life LCD management strategies.
    Amato A; Rocchetti L; Beolchini F
    Waste Manag; 2017 Jan; 59():432-441. PubMed ID: 27679968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.