BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23323842)

  • 41. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France.
    Lecler MT; Zimmermann F; Silvente E; Clerc F; Chollot A; Grosjean J
    Waste Manag; 2015 May; 39():226-35. PubMed ID: 25776743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.
    Akcil A; Erust C; Gahan CS; Ozgun M; Sahin M; Tuncuk A
    Waste Manag; 2015 Nov; 45():258-71. PubMed ID: 25704926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Precious and critical metals from wasted LED lamps: characterization and evaluation.
    Cenci MP; Dal Berto FC; Castillo BW; Veit HM
    Environ Technol; 2022 May; 43(12):1870-1881. PubMed ID: 33241733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs): Original article.
    Vats MC; Singh SK
    Waste Manag; 2015 Nov; 45():280-8. PubMed ID: 26112260
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants.
    Oleszek S; Grabda M; Shibata E; Nakamura T
    Waste Manag; 2013 Sep; 33(9):1835-42. PubMed ID: 23746984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Yttrium recovery from primary and secondary sources: a review of main hydrometallurgical processes.
    Innocenzi V; De Michelis I; Kopacek B; Vegliò F
    Waste Manag; 2014 Jul; 34(7):1237-50. PubMed ID: 24613592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Challenges for critical raw material recovery from WEEE - The case study of gallium.
    Ueberschaar M; Otto SJ; Rotter VS
    Waste Manag; 2017 Feb; 60():534-545. PubMed ID: 28089397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery.
    Birloaga I; De Michelis I; Ferella F; Buzatu M; Vegliò F
    Waste Manag; 2013 Apr; 33(4):935-41. PubMed ID: 23374398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of copper rich metallic phases from waste printed circuit boards.
    Cayumil R; Khanna R; Ikram-Ul-Haq M; Rajarao R; Hill A; Sahajwalla V
    Waste Manag; 2014 Oct; 34(10):1783-92. PubMed ID: 25052340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of cuprous chloride and simultaneous recovery of Ag and Pd from waste printed circuit boards.
    Zhang Z; Zhang FS
    J Hazard Mater; 2013 Oct; 261():398-404. PubMed ID: 23973472
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prioritizing material recovery for end-of-life printed circuit boards.
    Wang X; Gaustad G
    Waste Manag; 2012 Oct; 32(10):1903-13. PubMed ID: 22677014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy).
    Biganzoli L; Falbo A; Forte F; Grosso M; Rigamonti L
    Sci Total Environ; 2015 Aug; 524-525():361-75. PubMed ID: 25913003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrometallurgical recovery of silver and gold from waste printed circuit boards and treatment of the wastewater in a biofilm reactor: An integrated pilot application.
    Vlasopoulos D; Mendrinou P; Oustadakis P; Kousi P; Stergiou A; Karamoutsos SD; Hatzikioseyian A; Tsakiridis PE; Remoundaki E; Agatzini-Leonardou S
    J Environ Manage; 2023 Oct; 344():118334. PubMed ID: 37354591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging.
    Palmieri R; Bonifazi G; Serranti S
    Waste Manag; 2014 Nov; 34(11):2120-30. PubMed ID: 24997795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Status of electronic waste recycling techniques: a review.
    Abdelbasir SM; Hassan SSM; Kamel AH; El-Nasr RS
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16533-16547. PubMed ID: 29737485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovering metallic fractions from waste electrical and electronic equipment by a novel vibration system.
    Habib M; Miles NJ; Hall P
    Waste Manag; 2013 Mar; 33(3):722-9. PubMed ID: 23305811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.
    Zhang S; Ding Y; Liu B; Pan D; Chang CC; Volinsky AA
    Waste Manag; 2015 Nov; 45():361-73. PubMed ID: 26059074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lab scale optimization and two-step sequential bench scale reactor leaching tests for the chemical dissolution of Cu, Au & Ag from waste electrical and electronic equipment (WEEE).
    Tuncuk A
    Waste Manag; 2019 Jul; 95():636-643. PubMed ID: 31351651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.