These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23324538)

  • 1. Composition and conductance distributions of single GeSi quantum rings studied by conductive atomic force microscopy combined with selective chemical etching.
    Lv Y; Cui J; Jiang ZM; Yang XJ
    Nanotechnology; 2013 Feb; 24(6):065702. PubMed ID: 23324538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.
    Zhang SL; Xue F; Wu R; Cui J; Jiang ZM; Yang XJ
    Nanotechnology; 2009 Apr; 20(13):135703. PubMed ID: 19420512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Composition and Conductance Distributions on Highly GeSi Mixed Quantum Dots and Inside Oxidation Problem.
    Ye FF; Ma YJ; Lv Y; Jiang ZM; Yang XJ
    Nanoscale Res Lett; 2015 Dec; 10(1):476. PubMed ID: 26650513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.
    Lv Y; Cui J; Jiang ZM; Yang X
    Nanoscale Res Lett; 2012 Nov; 7(1):659. PubMed ID: 23194252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias-dependent conductive characteristics of individual GeSi quantum dots studied by conductive atomic force microscopy.
    Wu R; Zhang SL; Lin JH; Jiang ZM; Yang XJ
    Nanotechnology; 2011 Mar; 22(9):095708. PubMed ID: 21270493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased conductance of individual self-assembled GeSi quantum dots by inter-dot coupling studied by conductive atomic force microscopy.
    Zhang Y; Ye F; Lin J; Jiang Z; Yang X
    Nanoscale Res Lett; 2012 May; 7(1):278. PubMed ID: 22650414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of microscopic proton current flow distributions in fresh and aged Nafion membranes.
    Kwon O; Kang Y; Wu S; Zhu DM
    J Phys Chem B; 2010 Apr; 114(16):5365-70. PubMed ID: 20369807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography.
    Rastelli A; Stoffel M; Malachias A; Merdzhanova T; Katsaros G; Kern K; Metzger TH; Schmidt OG
    Nano Lett; 2008 May; 8(5):1404-9. PubMed ID: 18376870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the composition of hetero-epitaxial islands via morphological analysis: an analytical model matching GeSi/Si(001) data.
    Gatti R; Pezzoli F; Boioli F; Montalenti F; Miglio L
    J Phys Condens Matter; 2012 Mar; 24(10):104018. PubMed ID: 22353725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction and conductance imaging of sp(2)- and sp(3)-hybridized subdomains on single-layer graphene oxide.
    Lee H; Son N; Jeong HY; Kim TG; Bang GS; Kim JY; Shim GW; Goddeti KC; Kim JH; Kim N; Shin HJ; Kim W; Kim S; Choi SY; Park JY
    Nanoscale; 2016 Feb; 8(7):4063-9. PubMed ID: 26819189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy.
    Park JY; Qi Y; Ashby PD; Hendriksen BL; Salmeron M
    J Chem Phys; 2009 Mar; 130(11):114705. PubMed ID: 19317553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical identification of individual surface atoms by atomic force microscopy.
    Sugimoto Y; Pou P; Abe M; Jelinek P; Pérez R; Morita S; Custance O
    Nature; 2007 Mar; 446(7131):64-7. PubMed ID: 17330040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Determination of 3D Distribution of Elemental Composition in Single Semiconductor Nanoislands by Scanning Auger Microscopy.
    Ponomaryov SS; Yukhymchuk VO; Lytvyn PM; Valakh MY
    Nanoscale Res Lett; 2016 Dec; 11(1):103. PubMed ID: 26909783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy.
    Tong CZ; Yoon SF
    Nanotechnology; 2008 Sep; 19(36):365604. PubMed ID: 21828875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning probe microscopies applied to the study of the domain wall in a ferroelectric crystal.
    Canet-Ferrer J; Martín-Carrón L; Martínez-Pastor J; Valdés JL; Peña A; Carvajal JJ; Diaz F
    J Microsc; 2007 May; 226(Pt 2):133-9. PubMed ID: 17444942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure, composition, and etching topography of dental ceramics.
    Della Bona A; Anusavice KJ
    Int J Prosthodont; 2002; 15(2):159-67. PubMed ID: 11951806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ quantitative analysis of etching process of human teeth by atomic force microscopy.
    Watari F
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):299-308. PubMed ID: 16148016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging.
    Rheinlaender J; Geisse NA; Proksch R; Schäffer TE
    Langmuir; 2011 Jan; 27(2):697-704. PubMed ID: 21158392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective etching of dislocations in GaN and quantitative SEM analysis with shape-reconstruction method.
    Wzorek M; Czerwinski A; Ratajczak J; Dylewicz R; Katcki J
    Micron; 2009 Jan; 40(1):37-40. PubMed ID: 18394908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
    Strus MC; Lahiji RR; Ares P; López V; Raman A; Reifenberger R
    Nanotechnology; 2009 Sep; 20(38):385709. PubMed ID: 19713587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.