BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 2332455)

  • 1. Regulation of hexose transport in L8 myocytes by glucose: possible sites of interaction.
    Wertheimer E; Sasson S; Cerasi E
    J Cell Physiol; 1990 May; 143(2):330-6. PubMed ID: 2332455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters.
    Sasson S; Kaiser N; Dan-Goor M; Oron R; Koren S; Wertheimer E; Unluhizarci K; Cerasi E
    Diabetologia; 1997 Jan; 40(1):30-9. PubMed ID: 9028715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation by protein synthesis inhibitors of glucose transport into L6 muscle cells.
    Hayes N; Biswas C; Strout HV; Berger J
    Biochem Biophys Res Commun; 1993 Feb; 190(3):881-7. PubMed ID: 8439337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence indicating the identity of the cytochalasin B photolabelled components in rat myoblasts.
    Chen SR; Lo TC
    Biochem Int; 1990; 20(4):747-59. PubMed ID: 2353924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characteristics and regulation of hexose transport in a galactokinase-negative Chinese hamster fibroblast cell line: a good model for studies on sugar transport in cultured mammalian cells.
    Germinario RJ; Lakshmi TM; Thirion JP
    J Cell Physiol; 1989 Feb; 138(2):300-4. PubMed ID: 2918031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose regulates its transport in L8 myocytes by modulating cellular trafficking of the transporter GLUT-1.
    Greco-Perotto R; Wertheimer E; Jeanrenaud B; Cerasi E; Sasson S
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):157-63. PubMed ID: 1520263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hypertonicity on hexose transporter regulation in chicken embryo fibroblasts.
    Tillotson LG; Isselbacher KJ
    J Cell Physiol; 1987 Nov; 133(2):383-8. PubMed ID: 3680395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genistein inhibits insulin-stimulated glucose transport and decreases immunocytochemical labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in isolated rat adipocytes: additional evidence of GLUT4 activation by insulin.
    Smith RM; Tiesinga JJ; Shah N; Smith JA; Jarett L
    Arch Biochem Biophys; 1993 Jan; 300(1):238-46. PubMed ID: 8424658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between protein O-linked glycosylation and insulin-stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate.
    Arias EB; Cartee GD
    Acta Physiol Scand; 2005 Mar; 183(3):281-9. PubMed ID: 15743388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats.
    Henriksen EJ; Kinnick TR; Teachey MK; O'Keefe MP; Ring D; Johnson KW; Harrison SD
    Am J Physiol Endocrinol Metab; 2003 May; 284(5):E892-900. PubMed ID: 12517738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of glucose transport mutants to examine the intrinsic properties of glucose transport processes in rat myoblasts.
    Mesmer OT; Chen XY; Lo TC
    Biochem Mol Biol Int; 1995 Jul; 36(3):605-16. PubMed ID: 7549960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses.
    Guillet-Deniau I; Leturque A; Girard J
    J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of hexose transport in myogenic differentiation.
    Kudo PA; Lo TC
    J Cell Physiol; 1990 Nov; 145(2):347-55. PubMed ID: 2246333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the D-allose-mediated regulation of sugar transport in Chinese hamster fibroblasts.
    Germinario RJ; Kristof A; Chang Z; Manuel S
    J Cell Physiol; 1990 Nov; 145(2):318-23. PubMed ID: 2246330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 2-deoxy-d-glucose on the functional state of the rat myoblast GLUT 1 transporter.
    Mesmer OT; Lu Z; Xia L; Lo TC
    Biochem Mol Biol Int; 1996 Oct; 40(2):217-33. PubMed ID: 8896744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexose transport after glucose refeeding of glucose-starved human fibroblasts: 1. The effects of tunicamycin and cycloheximide. 2. Insulin binding and action.
    Germinario RJ; Michaelidou A
    Biochem Biophys Res Commun; 1986 Nov; 140(3):844-9. PubMed ID: 3535799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glucose starvation on glucose transport in neuronal cells in primary culture from rat brain.
    Hara M; Matsuda Y; Okumura N; Hirai K; Nakagawa H
    J Neurochem; 1989 Mar; 52(3):909-12. PubMed ID: 2918314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate regulation of the glucose transport system in rat skeletal muscle. Characterization and kinetic analysis in isolated soleus muscle and skeletal muscle cells in culture.
    Sasson S; Cerasi E
    J Biol Chem; 1986 Dec; 261(36):16827-33. PubMed ID: 3782145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerted hexose transport curb by tunicamycin is rendered irreversible by glucose or allose in medium containing L-glutamine.
    Ullrey DB; Kalckar HM
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4350-1. PubMed ID: 2734289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.