These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 23324607)
21. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Schiano CA; Bellows LE; Lathem WW Infect Immun; 2010 May; 78(5):2034-44. PubMed ID: 20231416 [TBL] [Abstract][Full Text] [Related]
22. Temperature Control of Quinn JD; Weening EH; Miner TA; Miller VL J Bacteriol; 2019 Aug; 201(16):. PubMed ID: 31138630 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Skurnik M; Peippo A; Ervelä E Mol Microbiol; 2000 Jul; 37(2):316-30. PubMed ID: 10931327 [TBL] [Abstract][Full Text] [Related]
24. Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. Tsang TM; Wiese JS; Felek S; Kronshage M; Krukonis ES PLoS One; 2013; 8(12):e83621. PubMed ID: 24386237 [TBL] [Abstract][Full Text] [Related]
25. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Forman S; Paulley JT; Fetherston JD; Cheng YQ; Perry RD Biometals; 2010 Apr; 23(2):275-94. PubMed ID: 20049509 [TBL] [Abstract][Full Text] [Related]
26. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Bi Y; Wang X; Han Y; Guo Z; Yang R Scand J Immunol; 2012 Dec; 76(6):541-51. PubMed ID: 22882408 [TBL] [Abstract][Full Text] [Related]
27. The evolution of flea-borne transmission in Yersinia pestis. Hinnebusch BJ Curr Issues Mol Biol; 2005 Jul; 7(2):197-212. PubMed ID: 16053250 [TBL] [Abstract][Full Text] [Related]
28. Discovering RNA-Based Regulatory Systems for Knittel V; Vollmer I; Volk M; Dersch P Front Cell Infect Microbiol; 2018; 8():378. PubMed ID: 30460205 [TBL] [Abstract][Full Text] [Related]
29. A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. Calder JT; Christman ND; Hawkins JM; Erickson DL J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32778558 [TBL] [Abstract][Full Text] [Related]
30. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis. Pouillot F; Fayolle C; Carniel E Infect Immun; 2008 Oct; 76(10):4592-9. PubMed ID: 18678673 [TBL] [Abstract][Full Text] [Related]
31. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. Vadyvaloo V; Hinz AK PLoS One; 2015; 10(9):e0137508. PubMed ID: 26348850 [TBL] [Abstract][Full Text] [Related]
32. Acquisition of omptin reveals cryptic virulence function of autotransporter YapE in Yersinia pestis. Lawrenz MB; Pennington J; Miller VL Mol Microbiol; 2013 Jul; 89(2):276-87. PubMed ID: 23701256 [TBL] [Abstract][Full Text] [Related]
33. Identification of small, noncoding RNAs in pathogenic Yersinia species: implications for evolution and virulence. Lathem WW Virulence; 2012; 3(2):154-6. PubMed ID: 22460640 [No Abstract] [Full Text] [Related]
34. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Quintard K; Dewitte A; Reboul A; Madec E; Bontemps-Gallo S; Dondeyne J; Marceau M; Simonet M; Lacroix JM; Sebbane F Infect Immun; 2015 Sep; 83(9):3638-47. PubMed ID: 26150539 [TBL] [Abstract][Full Text] [Related]
35. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Pujol C; Bliska JB Infect Immun; 2003 Oct; 71(10):5892-9. PubMed ID: 14500510 [TBL] [Abstract][Full Text] [Related]
36. CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the Silva-Rohwer AR; Held K; Sagawa J; Fernandez NL; Waters CM; Vadyvaloo V mBio; 2021 Aug; 12(4):e0135821. PubMed ID: 34340543 [TBL] [Abstract][Full Text] [Related]
37. Hfq Globally Binds and Destabilizes sRNAs and mRNAs in Yersinia pestis. Han Y; Chen D; Yan Y; Gao X; Liu Z; Xue Y; Zhang Y; Yang R mSystems; 2019 Jul; 4(4):. PubMed ID: 31311844 [TBL] [Abstract][Full Text] [Related]
38. Current trends in plague research: from genomics to virulence. Huang XZ; Nikolich MP; Lindler LE Clin Med Res; 2006 Sep; 4(3):189-99. PubMed ID: 16988099 [TBL] [Abstract][Full Text] [Related]
39. A direct link between the global regulator PhoP and the Csr regulon in Y. pseudotuberculosis through the small regulatory RNA CsrC. Nuss AM; Schuster F; Kathrin Heroven A; Heine W; Pisano F; Dersch P RNA Biol; 2014; 11(5):580-93. PubMed ID: 24786463 [TBL] [Abstract][Full Text] [Related]
40. Posttranscriptional regulation of the Yersinia pestis cyclic AMP receptor protein Crp and impact on virulence. Lathem WW; Schroeder JA; Bellows LE; Ritzert JT; Koo JT; Price PA; Caulfield AJ; Goldman WE mBio; 2014 Feb; 5(1):e01038-13. PubMed ID: 24520064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]