BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23324721)

  • 1. Unilateral ankle immobilization alters the kinematics and kinetics of lifting.
    Beach TA; Frost DM; Clark JM; Maly MR; Callaghan JP
    Work; 2014; 47(2):221-34. PubMed ID: 23324721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FMS™ scores and low-back loading during lifting--whole-body movement screening as an ergonomic tool?
    Beach TA; Frost DM; Callaghan JP
    Appl Ergon; 2014 May; 45(3):482-9. PubMed ID: 23876984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads.
    Gooyers CE; Beach TAC; Frost DM; Howarth SJ; Callaghan JP
    Appl Ergon; 2018 Feb; 67():203-210. PubMed ID: 29122191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.
    West T; Ng L; Campbell A
    Scand J Med Sci Sports; 2014 Dec; 24(6):958-63. PubMed ID: 24112601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lumbar spine loads during the lifting of extremely heavy weights.
    Cholewicki J; McGill SM; Norman RW
    Med Sci Sports Exerc; 1991 Oct; 23(10):1179-86. PubMed ID: 1758295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A braced arm-to-thigh (BATT) lifting technique reduces lumbar spine loads in healthy and low back pain participants.
    Beaucage-Gauvreau E; Brandon SCE; Robertson WSP; Fraser R; Freeman BJC; Graham RB; Thewlis D; Jones CF
    J Biomech; 2020 Feb; 100():109584. PubMed ID: 31898975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities.
    Heidari E; Arjmand N; Kahrizi S
    J Biomech; 2022 Nov; 144():111344. PubMed ID: 36270086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low back load in airport baggage handlers.
    Koblauch H
    Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats.
    List R; Gülay T; Stoop M; Lorenzetti S
    J Strength Cond Res; 2013 Jun; 27(6):1529-38. PubMed ID: 22990570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting.
    Hwang S; Kim Y; Kim Y
    BMC Musculoskelet Disord; 2009 Feb; 10():15. PubMed ID: 19183507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of spinal internal loads and lumbar curvature under holding static load at different trunk and knee positions.
    Kahrizi S; Parnianpour M; Firoozabadi SM; Kasemnejad A; Karimi E
    Pak J Biol Sci; 2007 Apr; 10(7):1036-43. PubMed ID: 19070047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the age-related changes in movement smoothness in the lower extremity joints during lifting.
    Sakata K; Kogure A; Hosoda M; Isozaki K; Masuda T; Morita S
    Gait Posture; 2010 Jan; 31(1):27-31. PubMed ID: 19800238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.
    Kim HK; Zhang Y
    Ergonomics; 2017 Apr; 60(4):563-576. PubMed ID: 27194401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbar Facet Joint Kinematics and Load Effects During Dynamic Lifting.
    Chowdhury SK; Byrne RM; Zhou Y; Zhang X
    Hum Factors; 2018 Dec; 60(8):1130-1145. PubMed ID: 30074402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.