These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23325081)

  • 21. Long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular.
    Kimura H; Momiyama M; Tomita K; Tsuchiya H; Hoffman RM
    J Biomed Opt; 2010; 15(6):066029. PubMed ID: 21198203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-photon microscopy: visualization of kidney dynamics.
    Ashworth SL; Sandoval RM; Tanner GA; Molitoris BA
    Kidney Int; 2007 Aug; 72(4):416-21. PubMed ID: 17538570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models.
    Sweet DH; Eraly SA; Vaughn DA; Bush KT; Nigam SK
    Kidney Int; 2006 Mar; 69(5):837-45. PubMed ID: 16518343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ex vivo whole embryonic kidney culture: a novel method for research in development, regeneration and transplantation.
    Giuliani S; Perin L; Sedrakyan S; Kokorowski P; Jin D; De Filippo R
    J Urol; 2008 Jan; 179(1):365-70. PubMed ID: 18006007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin.
    Dong CY; Yu B; Kaplan PD; So PT
    Microsc Res Tech; 2004 Jan; 63(1):81-6. PubMed ID: 14677137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metanephric development in serum-free organ culture.
    Avner ED; Ellis D; Temple T; Jaffe R
    In Vitro; 1982 Aug; 18(8):675-82. PubMed ID: 7129481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution.
    Lillis KP; Eng A; White JA; Mertz J
    J Neurosci Methods; 2008 Jul; 172(2):178-84. PubMed ID: 18539336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissection of embryonic mouse kidney, culture in vitro, and imaging of the developing organ.
    Costantini F; Watanabe T; Lu B; Chi X; Srinivas S
    Cold Spring Harb Protoc; 2011 May; 2011(5):pdb.prot5613. PubMed ID: 21536763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ex Vivo Whole-Mount Imaging of Leukocyte Migration to the Bone Marrow.
    Holtkamp S; Scheiermann C
    Methods Mol Biol; 2021; 2308():139-150. PubMed ID: 34057721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar.
    Lo W; Sun Y; Lin SJ; Jee SH; Dong CY
    J Biomed Opt; 2005; 10(3):034006. PubMed ID: 16229650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression patterns and roles of periostin during kidney and ureter development.
    Sorocos K; Kostoulias X; Cullen-McEwen L; Hart AH; Bertram JF; Caruana G
    J Urol; 2011 Oct; 186(4):1537-44. PubMed ID: 21855915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis.
    Srinivas S; Goldberg MR; Watanabe T; D'Agati V; al-Awqati Q; Costantini F
    Dev Genet; 1999; 24(3-4):241-51. PubMed ID: 10322632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tomographic quantification of branching morphogenesis and renal development.
    Short KM; Hodson MJ; Smyth IM
    Kidney Int; 2010 Jun; 77(12):1132-9. PubMed ID: 20200502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon.
    Dufour P; Piché M; De Koninck Y; McCarthy N
    Appl Opt; 2006 Dec; 45(36):9246-52. PubMed ID: 17151766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated pipeline for the multidimensional analysis of branching morphogenesis.
    Combes AN; Short KM; Lefevre J; Hamilton NA; Little MH; Smyth IM
    Nat Protoc; 2014 Dec; 9(12):2859-79. PubMed ID: 25411953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence lifetime imaging microscopy.
    Chang CW; Sud D; Mycek MA
    Methods Cell Biol; 2007; 81():495-524. PubMed ID: 17519182
    [No Abstract]   [Full Text] [Related]  

  • 38. In Vivo Cell Tracking Using Two-Photon Microscopy.
    Malide D
    Methods Mol Biol; 2016; 1444():109-22. PubMed ID: 27283422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of hepatocyte growth factor in kidney development.
    Santos OF; Barros EJ; Yang XM; Matsumoto K; Nakamura T; Park M; Nigam SK
    Dev Biol; 1994 Jun; 163(2):525-9. PubMed ID: 8200486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney.
    Bullock SL; Johnson TM; Bao QI; Hughes RC; Winyard PJD; Woolf AS
    J Am Soc Nephrol; 2001 Mar; 12(3):515-523. PubMed ID: 11181799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.