These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 23325122)
1. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. Wu H; Sun T; Wang J; Li X; Wang W; Huo D; Lv P; He W; Wang K; Guo X J Digit Imaging; 2013 Aug; 26(4):797-802. PubMed ID: 23325122 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related]
3. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram. Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097 [TBL] [Abstract][Full Text] [Related]
4. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
5. Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. Zhu Y; Tan Y; Hua Y; Wang M; Zhang G; Zhang J J Digit Imaging; 2010 Feb; 23(1):51-65. PubMed ID: 19242759 [TBL] [Abstract][Full Text] [Related]
6. Solitary pulmonary nodules: optimal slice thickness of high-resolution CT in differentiating malignant from benign. Iwano S; Makino N; Ikeda M; Itoh S; Tadokoro M; Satake H; Ishigaki T Clin Imaging; 2004; 28(5):322-8. PubMed ID: 15471662 [TBL] [Abstract][Full Text] [Related]
7. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Matsuki Y; Nakamura K; Watanabe H; Aoki T; Nakata H; Katsuragawa S; Doi K AJR Am J Roentgenol; 2002 Mar; 178(3):657-63. PubMed ID: 11856693 [TBL] [Abstract][Full Text] [Related]
8. Persistent Pure Ground-Glass Nodules Larger Than 5 mm: Differentiation of Invasive Pulmonary Adenocarcinomas From Preinvasive Lesions or Minimally Invasive Adenocarcinomas Using Texture Analysis. Hwang IP; Park CM; Park SJ; Lee SM; McAdams HP; Jeon YK; Goo JM Invest Radiol; 2015 Nov; 50(11):798-804. PubMed ID: 26146871 [TBL] [Abstract][Full Text] [Related]
9. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT. Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556 [TBL] [Abstract][Full Text] [Related]
10. [Dynamic enhanced CT evaluation of solitary pulmonary nodules]. Ye XD; Yuan Z; Ye JD; Li HM; Xiao XS Zhonghua Zhong Liu Za Zhi; 2011 Apr; 33(4):308-12. PubMed ID: 21575507 [TBL] [Abstract][Full Text] [Related]
11. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Alilou M; Beig N; Orooji M; Rajiah P; Velcheti V; Rakshit S; Reddy N; Yang M; Jacono F; Gilkeson RC; Linden P; Madabhushi A Med Phys; 2017 Jul; 44(7):3556-3569. PubMed ID: 28295386 [TBL] [Abstract][Full Text] [Related]
12. Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity. Nishio M; Nagashima C Acad Radiol; 2017 Mar; 24(3):328-336. PubMed ID: 28110797 [TBL] [Abstract][Full Text] [Related]
13. Integrating PET and CT information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. Nie Y; Li Q; Li F; Pu Y; Appelbaum D; Doi K J Nucl Med; 2006 Jul; 47(7):1075-80. PubMed ID: 16818939 [TBL] [Abstract][Full Text] [Related]
14. Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. Li F; Aoyama M; Shiraishi J; Abe H; Li Q; Suzuki K; Engelmann R; Sone S; Macmahon H; Doi K AJR Am J Roentgenol; 2004 Nov; 183(5):1209-15. PubMed ID: 15505279 [TBL] [Abstract][Full Text] [Related]
15. [Comparative analysis of computed tomography texture features between pulmonary inflammatory nodules and lung cancer]. E LN; Zhang N; Wang RH; Wu ZF Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):847-850. PubMed ID: 30481937 [No Abstract] [Full Text] [Related]
16. Automated lung nodule classification following automated nodule detection on CT: a serial approach. Armato SG; Altman MB; Wilkie J; Sone S; Li F; Doi K; Roy AS Med Phys; 2003 Jun; 30(6):1188-97. PubMed ID: 12852543 [TBL] [Abstract][Full Text] [Related]
17. Computer-aided diagnosis of the solitary pulmonary nodule. Shah SK; McNitt-Gray MF; Rogers SR; Goldin JG; Suh RD; Sayre JW; Petkovska I; Kim HJ; Aberle DR Acad Radiol; 2005 May; 12(5):570-5. PubMed ID: 15866129 [TBL] [Abstract][Full Text] [Related]
18. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function. Lo SB; Freedman MT; Gillis LB; White CS; Mun SK AJR Am J Roentgenol; 2018 Mar; 210(3):480-488. PubMed ID: 29336601 [TBL] [Abstract][Full Text] [Related]
19. Malignancy risk estimation of pulmonary nodules in screening CTs: Comparison between a computer model and human observers. van Riel SJ; Ciompi F; Winkler Wille MM; Dirksen A; Lam S; Scholten ET; Rossi SE; Sverzellati N; Naqibullah M; Wittenberg R; Hovinga-de Boer MC; Snoeren M; Peters-Bax L; Mets O; Brink M; Prokop M; Schaefer-Prokop C; van Ginneken B PLoS One; 2017; 12(11):e0185032. PubMed ID: 29121063 [TBL] [Abstract][Full Text] [Related]
20. Combining serum miRNAs, CEA, and CYFRA21-1 with imaging and clinical features to distinguish benign and malignant pulmonary nodules: a pilot study : Xianfeng Li et al.: Combining biomarker, imaging, and clinical features to distinguish pulmonary nodules. Li X; Zhang Q; Jin X; Cao L World J Surg Oncol; 2017 May; 15(1):107. PubMed ID: 28545454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]