These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel. Yan X; Wang J; Sun Y; Zhu J; Wu S Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682 [TBL] [Abstract][Full Text] [Related]
5. Structure of an aryl esterase from Pseudomonas fluorescens. Cheeseman JD; Tocilj A; Park S; Schrag JD; Kazlauskas RJ Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1237-43. PubMed ID: 15213385 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866 [TBL] [Abstract][Full Text] [Related]
7. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Park S; Morley KL; Horsman GP; Holmquist M; Hult K; Kazlauskas RJ Chem Biol; 2005 Jan; 12(1):45-54. PubMed ID: 15664514 [TBL] [Abstract][Full Text] [Related]
8. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Mandrich L; Menchise V; Alterio V; De Simone G; Pedone C; Rossi M; Manco G Proteins; 2008 Jun; 71(4):1721-31. PubMed ID: 18076040 [TBL] [Abstract][Full Text] [Related]
9. Increased enantioselectivity by engineering bottleneck mutants in an esterase from Pseudomonas fluorescens. Schliessmann A; Hidalgo A; Berenguer J; Bornscheuer UT Chembiochem; 2009 Dec; 10(18):2920-3. PubMed ID: 19847842 [TBL] [Abstract][Full Text] [Related]
10. Consequences of breaking the Asp-His hydrogen bond of the catalytic triad: effects on the structure and dynamics of the serine esterase cutinase. Lau EY; Bruice TC Biophys J; 1999 Jul; 77(1):85-98. PubMed ID: 10388742 [TBL] [Abstract][Full Text] [Related]
11. Enhancing H Zhou P; Lan D; Popowicz GM; Wang X; Yang B; Wang Y Appl Microbiol Biotechnol; 2017 Jul; 101(14):5689-5697. PubMed ID: 28516207 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Nobili A; Tao Y; Pavlidis IV; van den Bergh T; Joosten HJ; Tan T; Bornscheuer UT Chembiochem; 2015 Mar; 16(5):805-10. PubMed ID: 25711719 [TBL] [Abstract][Full Text] [Related]
13. Different active-site loop orientation in serine hydrolases versus acyltransferases. Jiang Y; Morley KL; Schrag JD; Kazlauskas RJ Chembiochem; 2011 Mar; 12(5):768-76. PubMed ID: 21351219 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block. Schmidt M; Hasenpusch D; Kähler M; Kirchner U; Wiggenhorn K; Langel W; Bornscheuer UT Chembiochem; 2006 May; 7(5):805-9. PubMed ID: 16575940 [TBL] [Abstract][Full Text] [Related]
15. Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. Krebsfänger N; Schierholz K; Bornscheuer UT J Biotechnol; 1998 Feb; 60(1-2):105-11. PubMed ID: 9571805 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Turner JM; Larsen NA; Basran A; Barbas CF; Bruce NC; Wilson IA; Lerner RA Biochemistry; 2002 Oct; 41(41):12297-307. PubMed ID: 12369817 [TBL] [Abstract][Full Text] [Related]
17. A Novel Subfamily Esterase with a Homoserine Transacetylase-like Fold but No Transferase Activity. Li PY; Yao QQ; Wang P; Zhang Y; Li Y; Zhang YQ; Hao J; Zhou BC; Chen XL; Shi M; Zhang YZ; Zhang XY Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235874 [TBL] [Abstract][Full Text] [Related]
18. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Meriläinen G; Poikela V; Kursula P; Wierenga RK Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of an esterase involved in cellulose acetate degradation by Neisseria sicca SB. Moriyoshi K; Ohmoto T; Ohe T; Sakai K Biosci Biotechnol Biochem; 1999 Oct; 63(10):1708-13. PubMed ID: 10586499 [TBL] [Abstract][Full Text] [Related]
20. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]