These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23325677)

  • 1. Photoelectrochemical scanning droplet cell microscopy (PE-SDCM).
    Kollender JP; Mardare AI; Hassel AW
    Chemphyschem; 2013 Feb; 14(3):560-7. PubMed ID: 23325677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition.
    Klahr BM; Martinson AB; Hamann TW
    Langmuir; 2011 Jan; 27(1):461-8. PubMed ID: 21126056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening of thin-film semiconductor material libraries I: system development and case study for Ti-W-O.
    Sliozberg K; Schäfer D; Erichsen T; Meyer R; Khare C; Ludwig A; Schuhmann W
    ChemSusChem; 2015 Apr; 8(7):1270-8. PubMed ID: 25727402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized photovoltaic investigations on organic semiconductors and bulk heterojunction solar cells.
    Kollender JP; Gasiorowski J; Sariciftci NS; Mardare AI; Hassel AW
    Sci Technol Adv Mater; 2014 Oct; 15(5):054201. PubMed ID: 27877711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors.
    Gasiorowski J; Kollender JP; Hingerl K; Sariciftci NS; Mardare AI; Hassel AW
    Phys Chem Chem Phys; 2014 Feb; 16(8):3739-48. PubMed ID: 24424428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3.
    May KJ; Fenning DP; Ming T; Hong WT; Lee D; Stoerzinger KA; Biegalski MD; Kolpak AM; Shao-Horn Y
    J Phys Chem Lett; 2015 Mar; 6(6):977-85. PubMed ID: 26262856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical and Electrochemical Characterization of Sub-Micro-Gram Amounts of Organic Semiconductors Using Scanning Droplet Cell Microscopy.
    Kollender JP; Gasiorowski J; Sariciftci NS; Mardare AI; Hassel AW
    J Phys Chem C Nanomater Interfaces; 2014 Jul; 118(30):16919-16926. PubMed ID: 25101149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy.
    Gasiorowski J; Mardare AI; Sariciftci NS; Hassel AW
    Electrochim Acta; 2013 Dec; 113():834-839. PubMed ID: 25843970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy.
    Lopes T; Andrade L; Le Formal F; Gratzel M; Sivula K; Mendes A
    Phys Chem Chem Phys; 2014 Aug; 16(31):16515-23. PubMed ID: 24987751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial Investigations of High Temperature CuNb Oxide Phases for Photoelectrochemical Water Splitting.
    Skorupska K; Maggard PA; Eichberger R; Schwarzburg K; Shahbazi P; Zoellner B; Parkinson BA
    ACS Comb Sci; 2015 Dec; 17(12):742-51. PubMed ID: 26505910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical characterization of sub-micro-gram amounts of organic semiconductors using scanning droplet cell microscopy.
    Gasiorowski J; Mardare AI; Sariciftci NS; Hassel AW
    J Electroanal Chem (Lausanne); 2013 Feb; 691(100):77-82. PubMed ID: 24926226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical Methods for the Determination of the Flat-Band Potential in Semiconducting Photocatalysts: A Comparison Study.
    Koshevoy E; Gribov E; Polskikh D; Lyulyukin M; Solovyeva M; Cherepanova S; Kozlov D; Selishchev D
    Langmuir; 2023 Sep; 39(38):13466-13480. PubMed ID: 37696112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation.
    Iwashina K; Kudo A
    J Am Chem Soc; 2011 Aug; 133(34):13272-5. PubMed ID: 21797261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.