These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23325921)

  • 1. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells.
    Maestre R; Douglass JD; Kodukula S; Medina I; Storch J
    J Nutr; 2013 Mar; 143(3):295-301. PubMed ID: 23325921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake.
    Dasilva G; Boller M; Medina I; Storch J
    J Nutr Biochem; 2018 May; 55():68-75. PubMed ID: 29413491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Lindsay EA; Han O
    J Food Sci; 2011; 76(5):H143-50. PubMed ID: 22417433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive dietary polyphenolic compounds reduce nonheme iron transport across human intestinal cell monolayers.
    Kim EY; Ham SK; Shigenaga MK; Han O
    J Nutr; 2008 Sep; 138(9):1647-51. PubMed ID: 18716164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis.
    Spiteller G
    Mol Nutr Food Res; 2005 Nov; 49(11):999-1013. PubMed ID: 16270286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant effects of proanthocyanidin-rich natural extracts from grape seed and cupuassu on gastrointestinal mucosa.
    Pinent M; Castell-Auví A; Genovese MI; Serrano J; Casanova A; Blay M; Ardévol A
    J Sci Food Agric; 2016 Jan; 96(1):178-82. PubMed ID: 25582348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbic acid offsets the inhibitory effect of bioactive dietary polyphenolic compounds on transepithelial iron transport in Caco-2 intestinal cells.
    Kim EY; Ham SK; Bradke D; Ma Q; Han O
    J Nutr; 2011 May; 141(5):828-34. PubMed ID: 21430251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proanthocyanidin-Rich Grape Seed Extract Reduces Inflammation and Oxidative Stress and Restores Tight Junction Barrier Function in Caco-2 Colon Cells.
    Nallathambi R; Poulev A; Zuk JB; Raskin I
    Nutrients; 2020 Jun; 12(6):. PubMed ID: 32492806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice.
    Yang G; Wang H; Kang Y; Zhu MJ
    Food Funct; 2014 Oct; 5(10):2558-63. PubMed ID: 25137131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion.
    Elejalde E; Villarán MC; Esquivel A; Alonso RM
    Plant Foods Hum Nutr; 2024 Jun; 79(2):432-439. PubMed ID: 38504008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive dietary polyphenols decrease heme iron absorption by decreasing basolateral iron release in human intestinal Caco-2 cells.
    Ma Q; Kim EY; Han O
    J Nutr; 2010 Jun; 140(6):1117-21. PubMed ID: 20375262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which is the best grape seed additive for frankfurters: extract, oil or flour?
    Özvural EB; Vural H
    J Sci Food Agric; 2014 Mar; 94(4):792-7. PubMed ID: 24122825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grape seed extract dose-responsively decreases disease severity in a rat model of mucositis; concomitantly enhancing chemotherapeutic effectiveness in colon cancer cells.
    Cheah KY; Howarth GS; Bastian SE
    PLoS One; 2014; 9(1):e85184. PubMed ID: 24465501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bioactive dietary polyphenols on zinc transport across the intestinal Caco-2 cell monolayers.
    Kim EY; Pai TK; Han O
    J Agric Food Chem; 2011 Apr; 59(8):3606-12. PubMed ID: 21410257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of in vitro digestion process on polyphenolic profile of skin grape (cv. Italia) and on antioxidant activity in basal or stressed conditions of human intestinal cell line (HT-29).
    Garbetta A; Nicassio L; D'Antuono I; Cardinali A; Linsalata V; Attolico G; Minervini F
    Food Res Int; 2018 Apr; 106():878-884. PubMed ID: 29579999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture.
    Trapani A; Esteban MÁ; Curci F; Manno DE; Serra A; Fracchiolla G; Espinosa-Ruiz C; Castellani S; Conese M
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial metabolites, but not other phenolics derived from grape seed phenolic extract, are transported through differentiated Caco-2 cell monolayers.
    Wang D; Williams BA; Ferruzzi MG; D'Arcy BR
    Food Chem; 2013 Jun; 138(2-3):1564-73. PubMed ID: 23411282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks.
    Viveros A; Chamorro S; Pizarro M; Arija I; Centeno C; Brenes A
    Poult Sci; 2011 Mar; 90(3):566-78. PubMed ID: 21325227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens.
    Brenes A; Viveros A; Goñi I; Centeno C; Sáyago-Ayerdy SG; Arija I; Saura-Calixto F
    Poult Sci; 2008 Feb; 87(2):307-16. PubMed ID: 18212374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of Zataria multiflora Boiss essential oil and grape seed extract impregnated chitosan film on ready-to-eat mortadella-type sausages during refrigerated storage.
    Moradi M; Tajik H; Razavi Rohani SM; Oromiehie AR
    J Sci Food Agric; 2011 Dec; 91(15):2850-7. PubMed ID: 21796636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.