BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 23326229)

  • 1. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.
    Wang Y; Yang P; Cui F; Kang L
    PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen
    Wang Y; Tong X; Yuan S; Yang P; Li L; Zhao Y; Kang L
    Proc Natl Acad Sci U S A; 2022 Feb; 119(6):. PubMed ID: 35110413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowded locusts produce hatchlings vulnerable to fungal attack.
    Miller GA; Pell JK; Simpson SJ
    Biol Lett; 2009 Dec; 5(6):845-8. PubMed ID: 19675004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions.
    Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM
    J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coping with crowds: density-dependent disease resistance in desert locusts.
    Wilson K; Thomas MB; Blanford S; Doggett M; Simpson SJ; Moore SL
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5471-5. PubMed ID: 11960003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locusts increase carbohydrate consumption to protect against a fungal biopesticide.
    Graham RI; Deacutis JM; Pulpitel T; Ponton F; Simpson SJ; Wilson K
    J Insect Physiol; 2014 Oct; 69():27-34. PubMed ID: 24862155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust.
    Jiang ZY; Ligoxygakis P; Xia YX
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4-Vinylanisole promotes conspecific interaction and acquisition of gregarious behavior in the migratory locust.
    Yang J; Yu Q; Yu J; Kang L; Guo X
    Proc Natl Acad Sci U S A; 2023 Sep; 120(37):e2306659120. PubMed ID: 37669362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic and mitochondrial ribosomal proteins mediate the locust phase transition via divergence of translational profiles.
    Li J; Wei L; Wang Y; Zhang H; Yang P; Zhao Z; Kang L
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2216851120. PubMed ID: 36701367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum.
    Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y
    BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity.
    Zhang W; Xie M; Eleftherianos I; Mohamed A; Cao Y; Song B; Zang LS; Jia C; Bian J; Keyhani NO; Xia Y
    J Adv Res; 2023 Jun; 48():1-16. PubMed ID: 36064181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits.
    Du B; Ding D; Ma C; Guo W; Kang L
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and temporal-spatial expression of I element in gregarious and solitary locusts.
    Guo W; Wang XH; Zhao DJ; Yang PC; Kang L
    J Insect Physiol; 2010 Aug; 56(8):943-8. PubMed ID: 20470781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust.
    Abro NA; Wang G; Ullah H; Long GL; Hao K; Nong X; Cai N; Tu X; Zhang Z
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17797-17808. PubMed ID: 31037535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.
    Talal S; Ayali A; Gefen E
    J Exp Biol; 2015 Dec; 218(Pt 23):3807-15. PubMed ID: 26486365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage.
    Zhang W; Zheng X; Chen J; Keyhani NO; Cai K; Xia Y
    Dev Comp Immunol; 2020 Mar; 104():103524. PubMed ID: 31634520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased and sex-selective avian predation of desert locusts Schistocerca gregaria treated with Metarhizium acridum.
    MulliƩ WC; Cheke RA; Young S; Ibrahim AB; Murk AJ
    PLoS One; 2021; 16(1):e0244733. PubMed ID: 33395451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species.
    Pattemore JA; Hane JK; Williams AH; Wilson BA; Stodart BJ; Ash GJ
    BMC Genomics; 2014 Aug; 15(1):660. PubMed ID: 25102932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA methyltransferase 3 participates in behavioral phase change in the migratory locust.
    Hou L; Wang X; Yang P; Li B; Lin Z; Kang L; Wang X
    Insect Biochem Mol Biol; 2020 Jun; 121():103374. PubMed ID: 32283278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.