These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23326530)

  • 1. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing.
    Krebs RM; Boehler CN; Appelbaum LG; Woldorff MG
    PLoS One; 2013; 8(1):e53894. PubMed ID: 23326530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of reward associations on conflict processing in the Stroop task.
    Krebs RM; Boehler CN; Woldorff MG
    Cognition; 2010 Dec; 117(3):341-7. PubMed ID: 20864094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Priming and backward influences in the human brain: processing interactions during the stroop interference effect.
    Appelbaum LG; Meyerhoff KL; Woldorff MG
    Cereb Cortex; 2009 Nov; 19(11):2508-21. PubMed ID: 19321654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural underpinnings of how reward associations can both guide and misguide attention.
    Krebs RM; Boehler CN; Egner T; Woldorff MG
    J Neurosci; 2011 Jun; 31(26):9752-9. PubMed ID: 21715640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
    van den Berg B; Krebs RM; Lorist MM; Woldorff MG
    Cogn Affect Behav Neurosci; 2014 Jun; 14(2):561-77. PubMed ID: 24820263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict.
    Donohue SE; Todisco AE; Woldorff MG
    J Cogn Neurosci; 2013 Apr; 25(4):623-35. PubMed ID: 23249355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive conflict increases processing of negative, task-irrelevant stimuli.
    Ligeza TS; Wyczesany M
    Int J Psychophysiol; 2017 Oct; 120():126-135. PubMed ID: 28757233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stroop matching task: role of feature selection and temporal modulation.
    David IA; Volchan E; Vila J; Keil A; de Oliveira L; Faria-Júnior AJ; Perakakis P; Dias EC; Mocaiber I; Pereira MG; Machado-Pinheiro W
    Exp Brain Res; 2011 Feb; 208(4):595-605. PubMed ID: 21161193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus and response conflict in the color-word Stroop task: a combined electro-myography and event-related potential study.
    Szucs D; Soltész F
    Brain Res; 2010 Apr; 1325():63-76. PubMed ID: 20153298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task preparation processes related to reward prediction precede those related to task-difficulty expectation.
    Schevernels H; Krebs RM; Santens P; Woldorff MG; Boehler CN
    Neuroimage; 2014 Jan; 84():639-47. PubMed ID: 24064071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural cascade of conflict processing: Not just time-on-task.
    McKay CC; van den Berg B; Woldorff MG
    Neuropsychologia; 2017 Feb; 96():184-191. PubMed ID: 28017818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociated stimulus and response conflict effect in the Stroop task: evidence from evoked brain potentials and brain oscillations.
    Zhao J; Liang WK; Juan CH; Wang L; Wang S; Zhu Z
    Biol Psychol; 2015 Jan; 104():130-8. PubMed ID: 25511611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dynamics of proactive and reactive cognitive control processes in the human brain.
    Appelbaum LG; Boehler CN; Davis LA; Won RJ; Woldorff MG
    J Cogn Neurosci; 2014 May; 26(5):1021-38. PubMed ID: 24345171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward expectation regulates brain responses to task-relevant and task-irrelevant emotional words: ERP evidence.
    Wei P; Wang D; Ji L
    Soc Cogn Affect Neurosci; 2016 Feb; 11(2):191-203. PubMed ID: 26245838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.
    Mager R; Meuth SG; Kräuchi K; Schmidlin M; Müller-Spahn F; Falkenstein M
    J Cogn Neurosci; 2009 Nov; 21(11):2185-94. PubMed ID: 18855548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward expectation modulates multiple stages of auditory conflict control.
    Kang G; Chang W; Wang L; Zhou X
    Int J Psychophysiol; 2019 Dec; 146():148-156. PubMed ID: 31648025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks.
    West R
    Neuropsychologia; 2003; 41(8):1122-35. PubMed ID: 12667546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.