These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23327288)

  • 21. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control.
    Rieder R; Lang K; Graber D; Micura R
    Chembiochem; 2007 May; 8(8):896-902. PubMed ID: 17440909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria.
    Meyer MM; Roth A; Chervin SM; Garcia GA; Breaker RR
    RNA; 2008 Apr; 14(4):685-95. PubMed ID: 18305186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6868-6872. PubMed ID: 29663603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain.
    Spitale RC; Torelli AT; Krucinska J; Bandarian V; Wedekind JE
    J Biol Chem; 2009 Apr; 284(17):11012-6. PubMed ID: 19261617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aptamer-based and aptazyme-based riboswitches in mammalian cells.
    Yokobayashi Y
    Curr Opin Chem Biol; 2019 Oct; 52():72-78. PubMed ID: 31238268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot.
    Heppell B; Lafontaine DA
    Biochemistry; 2008 Feb; 47(6):1490-9. PubMed ID: 18205390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Therapeutic Applications of Aptamer-Based Riboswitches.
    Lee CH; Han SR; Lee SW
    Nucleic Acid Ther; 2016 Feb; 26(1):44-51. PubMed ID: 26539634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational construction of eukaryotic OFF-riboswitches that downregulate internal ribosome entry site-mediated translation in response to their ligands.
    Ogawa A
    Bioorg Med Chem Lett; 2012 Feb; 22(4):1639-42. PubMed ID: 22260775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory context drives conservation of glycine riboswitch aptamers.
    Crum M; Ram-Mohan N; Meyer MM
    PLoS Comput Biol; 2019 Dec; 15(12):e1007564. PubMed ID: 31860665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context.
    Kim YB; Wacker A; Laer KV; Rogov VV; Suess B; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5375-5386. PubMed ID: 28115631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of fluorescent measurements for characterization of riboswitch-ligand interactions.
    Heppell B; Mulhbacher J; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2009; 540():25-37. PubMed ID: 19381550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core requirements of the adenine riboswitch aptamer for ligand binding.
    Lemay JF; Lafontaine DA
    RNA; 2007 Mar; 13(3):339-50. PubMed ID: 17200422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
    Matyjasik MM; Batey RT
    Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.