BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23327333)

  • 1. Probing ligand binding to thromboxane synthase.
    Chao WC; Lu JF; Wang JS; Yang HC; Pan TA; Chou SC; Wang LH; Chou PT
    Biochemistry; 2013 Feb; 52(6):1113-21. PubMed ID: 23327333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering of thromboxane synthase: conversion of membrane-bound to soluble form.
    Hsu PY; Wang LH
    Arch Biochem Biophys; 2003 Aug; 416(1):38-46. PubMed ID: 12859980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression, purification, and spectroscopic characterization of human thromboxane synthase.
    Hsu PY; Tsai AL; Kulmacz RJ; Wang LH
    J Biol Chem; 1999 Jan; 274(2):762-9. PubMed ID: 9873013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate binding is the rate-limiting step in thromboxane synthase catalysis.
    Wang LH; Tsai AL; Hsu PY
    J Biol Chem; 2001 May; 276(18):14737-43. PubMed ID: 11297515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of thromboxane A2 synthase active site residues by molecular modeling-guided site-directed mutagenesis.
    Wang LH; Matijevic-Aleksic N; Hsu PY; Ruan KH; Wu KK; Kulmacz RJ
    J Biol Chem; 1996 Aug; 271(33):19970-5. PubMed ID: 8702713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of thromboxane synthase amino acid residues involved in heme-propionate binding.
    Hsu PY; Tsai AL; Wang LH
    Arch Biochem Biophys; 2000 Nov; 383(1):119-27. PubMed ID: 11097184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved fluorescence studies of heterotropic ligand binding to cytochrome P450 3A4.
    Lampe JN; Atkins WM
    Biochemistry; 2006 Oct; 45(40):12204-15. PubMed ID: 17014074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-mediated changes in the tryptophan synthase indole tunnel probed by nile red fluorescence with wild type, mutant, and chemically modified enzymes.
    Ruvinov SB; Yang XJ; Parris KD; Banik U; Ahmed SA; Miles EW; Sackett DL
    J Biol Chem; 1995 Mar; 270(11):6357-69. PubMed ID: 7890774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the construction of a 3-D model for human thromboxane synthase using P450cam and BM-3 as templates: implications for the substrate binding pocket.
    Ruan KH; Milfeld K; Kulmacz RJ; Wu KK
    Protein Eng; 1994 Nov; 7(11):1345-51. PubMed ID: 7700866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence characterization of the hydrophobic pocket of cyclophilin B.
    Albani JR; Carpentier M; Lansiaux C
    J Fluoresc; 2008 Jan; 18(1):75-85. PubMed ID: 17899333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of a common substrate mimetic of cyclooxygenase-downstream synthases bound to an engineered thromboxane A2 synthase using a high-resolution NMR technique.
    Ruan KH; Wu J; Wang LH
    Arch Biochem Biophys; 2005 Dec; 444(2):165-73. PubMed ID: 16297851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific DNA displaces 6-p-toluidino-2-naphthalenesulfonate bound to a hydrophobic site on the DNA-binding domain of Drosophila c-myb.
    Madan A; Hosur RV; Padhy LC
    Biochemistry; 1994 Jun; 33(23):7120-6. PubMed ID: 8003478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the binding of TNS to centrin, an EF-hand protein.
    Wang ZJ; Ren LX; Zhao YQ; Li GT; Duan L; Liang AH; Yang BS
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):892-7. PubMed ID: 18054271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman investigation of the interaction of thromboxane synthase with substrate analogues.
    Chen Z; Wang LH; Schelvis JP
    Biochemistry; 2003 Mar; 42(9):2542-51. PubMed ID: 12614148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motions studies of the human alpha 1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and polarization of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues.
    Albani J
    Biophys Chem; 1992 Sep; 44(2):129-37. PubMed ID: 1391608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysing the microenvironment of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) in solvents and in different conformational states of proteins in relation to its fluorescence properties: a computational study.
    Haque N; Baratam K; Prabhu NP
    Phys Chem Chem Phys; 2017 Sep; 19(36):24656-24666. PubMed ID: 28857104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 6-(p-toluidinyl)naphthalene-2-sulfonic acid as a fluorescent probe of yeast hexokinase: conformational states induced by sugar and nucleotide ligands.
    Ohning GV; Neet KE
    Biochemistry; 1983 Jun; 22(12):2986-95. PubMed ID: 6347255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of human thromboxane synthase polymorphic variants.
    Chen CY; Poole EM; Ulrich CM; Kulmacz RJ; Wang LH
    Pharmacogenet Genomics; 2012 Sep; 22(9):653-8. PubMed ID: 22735388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thromboxane synthase: structure and function of protein and gene.
    Wang LH; Kulmacz RJ
    Prostaglandins Other Lipid Mediat; 2002 Aug; 68-69():409-22. PubMed ID: 12432933
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.