BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 23327483)

  • 1. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of superlubric sliding on graphite.
    de Wijn AS; Fusco C; Fasolino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046105. PubMed ID: 20481784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.
    Leicht P; Zielke L; Bouvron S; Moroni R; Voloshina E; Hammerschmidt L; Dedkov YS; Fonin M
    ACS Nano; 2014 Apr; 8(4):3735-42. PubMed ID: 24694063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion and drift of graphene flake on graphite surface.
    Lebedeva IV; Knizhnik AA; Popov AM; Ershova OV; Lozovik YE; Potapkin BV
    J Chem Phys; 2011 Mar; 134(10):104505. PubMed ID: 21405173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.
    Egberts P; Han GH; Liu XZ; Johnson AT; Carpick RW
    ACS Nano; 2014 May; 8(5):5010-21. PubMed ID: 24862034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.
    Popov AM; Lebedeva IV; Knizhnik AA; Lozovik YE; Potapkin BV; Poklonski NA; Siahlo AI; Vyrko SA
    J Chem Phys; 2013 Oct; 139(15):154705. PubMed ID: 24160531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of Graphene Nanoflake Diamond Interface Frictional Properties.
    Zhang J; Osloub E; Siddiqui F; Zhang W; Ragab T; Basaran C
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.
    Li J; Gao T; Luo J
    Adv Sci (Weinh); 2018 Mar; 5(3):1700616. PubMed ID: 29593965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frictional temperature rise in a sliding physisorbed monolayer of Kr/graphene.
    Walker M; Jaye C; Krim J; Cole MW
    J Phys Condens Matter; 2012 Oct; 24(42):424201. PubMed ID: 23032114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superlubricity of Graphite Sliding against Graphene Nanoflake under Ultrahigh Contact Pressure.
    Li J; Li J; Luo J
    Adv Sci (Weinh); 2018 Nov; 5(11):1800810. PubMed ID: 30479926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frictional transition from superlubric islands to pinned monolayers.
    Pierno M; Bruschi L; Mistura G; Paolicelli G; di Bona A; Valeri S; Guerra R; Vanossi A; Tosatti E
    Nat Nanotechnol; 2015 Aug; 10(8):714-8. PubMed ID: 26006001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.
    Abdul Khaliq R; Kafafy R; Salleh HM; Faris WF
    Nanotechnology; 2012 Nov; 23(45):455106. PubMed ID: 23085573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational chemistry study on friction of h-MoSâ‚‚. Part II. Friction anisotropy.
    Onodera T; Morita Y; Nagumo R; Miura R; Suzuki A; Tsuboi H; Hatakeyama N; Endou A; Takaba H; Dassenoy F; Minfray C; Joly-Pottuz L; Kubo M; Martin JM; Miyamoto A
    J Phys Chem B; 2010 Dec; 114(48):15832-8. PubMed ID: 21077588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.