These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23327584)
1. Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. Yang L; Tian D; Todd CD; Luo Y; Hu X J Proteome Res; 2013 Mar; 12(3):1316-30. PubMed ID: 23327584 [TBL] [Abstract][Full Text] [Related]
2. Aluminum Induces Distinct Changes in the Metabolism of Reactive Oxygen and Nitrogen Species in the Roots of Two Wheat Genotypes with Different Aluminum Resistance. Sun C; Liu L; Zhou W; Lu L; Jin C; Lin X J Agric Food Chem; 2017 Nov; 65(43):9419-9427. PubMed ID: 29016127 [TBL] [Abstract][Full Text] [Related]
3. Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress. Cheng T; Chen J; Ef AA; Wang P; Wang G; Hu X; Shi J Planta; 2015 Dec; 242(6):1361-90. PubMed ID: 26232921 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846 [TBL] [Abstract][Full Text] [Related]
5. Comparative proteomic analysis of rice shoots exposed to high arsenate. Liu Y; Li M; Han C; Wu F; Tu B; Yang P J Integr Plant Biol; 2013 Oct; 55(10):965-78. PubMed ID: 23773616 [TBL] [Abstract][Full Text] [Related]
6. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. Bai X; Yang L; Yang Y; Ahmad P; Yang Y; Hu X J Proteome Res; 2011 Oct; 10(10):4349-64. PubMed ID: 21846115 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204 [TBL] [Abstract][Full Text] [Related]
8. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. Pandey A; Rajamani U; Verma J; Subba P; Chakraborty N; Datta A; Chakraborty S; Chakraborty N J Proteome Res; 2010 Jul; 9(7):3443-64. PubMed ID: 20433195 [TBL] [Abstract][Full Text] [Related]
9. Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Lee J; Jiang W; Qiao Y; Cho YI; Woo MO; Chin JH; Kwon SW; Hong SS; Choi IY; Koh HJ Proteomics; 2011 Feb; 11(3):455-68. PubMed ID: 21268274 [TBL] [Abstract][Full Text] [Related]
10. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. Sehrawat A; Deswal R J Proteome Res; 2014 May; 13(5):2599-619. PubMed ID: 24684139 [TBL] [Abstract][Full Text] [Related]
11. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Leterrier M; Airaki M; Palma JM; Chaki M; Barroso JB; Corpas FJ Environ Pollut; 2012 Jul; 166():136-43. PubMed ID: 22504427 [TBL] [Abstract][Full Text] [Related]
12. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Cho K; Shibato J; Agrawal GK; Jung YH; Kubo A; Jwa NS; Tamogami S; Satoh K; Kikuchi S; Higashi T; Kimura S; Saji H; Tanaka Y; Iwahashi H; Masuo Y; Rakwal R J Proteome Res; 2008 Jul; 7(7):2980-98. PubMed ID: 18517257 [TBL] [Abstract][Full Text] [Related]
13. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Yang Q; Wang Y; Zhang J; Shi W; Qian C; Peng X Proteomics; 2007 Mar; 7(5):737-49. PubMed ID: 17295357 [TBL] [Abstract][Full Text] [Related]
14. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Xiao X; Yang F; Zhang S; Korpelainen H; Li C Physiol Plant; 2009 Jun; 136(2):150-68. PubMed ID: 19453505 [TBL] [Abstract][Full Text] [Related]
15. A proteomic analysis of cold stress responses in rice seedlings. Cui S; Huang F; Wang J; Ma X; Cheng Y; Liu J Proteomics; 2005 Aug; 5(12):3162-72. PubMed ID: 16078185 [TBL] [Abstract][Full Text] [Related]
16. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
17. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes. Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575 [TBL] [Abstract][Full Text] [Related]
18. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Tanou G; Ziogas V; Belghazi M; Christou A; Filippou P; Job D; Fotopoulos V; Molassiotis A Plant Cell Environ; 2014 Apr; 37(4):864-85. PubMed ID: 24112028 [TBL] [Abstract][Full Text] [Related]
19. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Bai XG; Chen JH; Kong XX; Todd CD; Yang YP; Hu XY; Li DZ Free Radic Biol Med; 2012 Aug; 53(4):710-20. PubMed ID: 22683602 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Ma L; Yang L; Zhao J; Wei J; Kong X; Wang C; Zhang X; Yang Y; Hu X Planta; 2015 Apr; 241(4):887-906. PubMed ID: 25526962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]