BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23327986)

  • 1. Bioengineered probiotics, a strategic approach to control enteric infections.
    Amalaradjou MA; Bhunia AK
    Bioengineered; 2013; 4(6):379-87. PubMed ID: 23327986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern approaches in probiotics research to control foodborne pathogens.
    Amalaradjou MA; Bhunia AK
    Adv Food Nutr Res; 2012; 67():185-239. PubMed ID: 23034117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens.
    Mathipa MG; Thantsha MS
    Gut Pathog; 2017; 9():28. PubMed ID: 28491143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges.
    Wan MLY; Forsythe SJ; El-Nezami H
    Crit Rev Food Sci Nutr; 2019; 59(20):3320-3333. PubMed ID: 29993263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of probiotics in prevention and treatment of enteric infections: a comprehensive review.
    Iqbal Z; Ahmed S; Tabassum N; Bhattacharya R; Bose D
    3 Biotech; 2021 May; 11(5):242. PubMed ID: 33968585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foodborne enterotoxigenic Escherichia coli: from gut pathogenesis to new preventive strategies involving probiotics.
    Roussel C; Sivignon A; de Wiele TV; Blanquet-Diot S
    Future Microbiol; 2017 Jan; 12():73-93. PubMed ID: 27983878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synbiotic-like effect of linoleic acid overproducing
    Tabashsum Z; Peng M; Bernhardt C; Patel P; Carrion M; Biswas D
    Gut Pathog; 2019; 11():41. PubMed ID: 31372184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probiotics and prebiotics in animal feeding for safe food production.
    Gaggìa F; Mattarelli P; Biavati B
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S15-28. PubMed ID: 20382438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of the antimicrobial potentials of Lactobacillus helveticus strains isolated from traditional cheese in Sinkiang China against food-borne pathogens.
    Bian X; Evivie SE; Muhammad Z; Luo GW; Liang HZ; Wang NN; Huo GC
    Food Funct; 2016 Feb; 7(2):789-97. PubMed ID: 26648272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.
    Peng M; Bitsko E; Biswas D
    J Food Sci; 2015 Mar; 80(3):M635-41. PubMed ID: 25627431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria.
    van Zyl WF; Deane SM; Dicks LMT
    Gut Microbes; 2020 Nov; 12(1):1831339. PubMed ID: 33112695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered bugs expressing oligosaccharide receptor mimics: toxin-binding probiotics for treatment and prevention of enteric infections.
    Paton AW; Morona R; Paton JC
    Bioeng Bugs; 2010; 1(3):172-7. PubMed ID: 21326923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects.
    Kumar M; Yadav AK; Verma V; Singh B; Mal G; Nagpal R; Hemalatha R
    Future Microbiol; 2016; 11(4):585-600. PubMed ID: 27070955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni.
    Santini C; Baffoni L; Gaggia F; Granata M; Gasbarri R; Di Gioia D; Biavati B
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S98-108. PubMed ID: 20452074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-layer protein 2 of Lactobacillus crispatus 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens.
    Abramov VM; Kosarev IV; Priputnevich TV; Machulin AV; Khlebnikov VS; Pchelintsev SY; Vasilenko RN; Sakulin VK; Suzina NE; Chikileva IO; Derysheva EI; Melnikov VG; Nikonov IN; Samoilenko VA; Svetoch EE; Sukhikh GT; Uversky VN; Karlyshev AV
    Int J Biol Macromol; 2020 May; 150():400-412. PubMed ID: 32045605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probiotic engineering strategies for the heterologous production of antimicrobial peptides.
    Mejía-Pitta A; Broset E; de la Fuente-Nunez C
    Adv Drug Deliv Rev; 2021 Sep; 176():113863. PubMed ID: 34273423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human microbial ecology: lactobacilli, probiotics, selective decontamination.
    Mikelsaar M
    Anaerobe; 2011 Dec; 17(6):463-7. PubMed ID: 21787875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobials from Seaweeds for Food Applications.
    Cabral EM; Oliveira M; Mondala JRM; Curtin J; Tiwari BK; Garcia-Vaquero M
    Mar Drugs; 2021 Apr; 19(4):. PubMed ID: 33920329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.
    Volkova VV; KuKanich B; Riviere JE
    Foodborne Pathog Dis; 2016 Nov; 13(11):610-617. PubMed ID: 27552491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients.
    Mandal SM; Silva ON; Franco OL
    Drug Discov Today; 2014 Aug; 19(8):1045-50. PubMed ID: 24881782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.