These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 23328131)

  • 21. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets.
    Nishimura K; Suzuki H; Toyota T; Yomo T
    J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes.
    Wang C; Wang L; Zhu X; Wang Y; Xue J
    Lab Chip; 2012 May; 12(9):1710-6. PubMed ID: 22441654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New and conventional pore size tests in virus-removing membranes.
    Duek A; Arkhangelsky E; Krush R; Brenner A; Gitis V
    Water Res; 2012 May; 46(8):2505-14. PubMed ID: 22265254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size of thermosensitive liposomes influences content release.
    Hossann M; Wang T; Wiggenhorn M; Schmidt R; Zengerle A; Winter G; Eibl H; Peller M; Reiser M; Issels RD; Lindner LH
    J Control Release; 2010 Nov; 147(3):436-43. PubMed ID: 20727921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots.
    Park YH; Lee DH; Um E; Park JK
    Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-bond-directed giant unilamellar vesicles of guanosine derivative: preparation, properties, and fusion.
    Sawayama J; Sakaino H; Kabashima S; Yoshikawa I; Araki K
    Langmuir; 2011 Jul; 27(14):8653-8. PubMed ID: 21649445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembly of size-controlled liposomes on DNA nanotemplates.
    Yang Y; Wang J; Shigematsu H; Xu W; Shih WM; Rothman JE; Lin C
    Nat Chem; 2016 May; 8(5):476-83. PubMed ID: 27102682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical stability of different liposome compositions obtained by extrusion method.
    Armengol X; Estelrich J
    J Microencapsul; 1995; 12(5):525-35. PubMed ID: 8544096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulation efficiency measured on single small unilamellar vesicles.
    Lohse B; Bolinger PY; Stamou D
    J Am Chem Soc; 2008 Nov; 130(44):14372-3. PubMed ID: 18842043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of PEGylated lipid and Lecinol S-10 on physico-chemical properties and encapsulation efficiency of palmitoleate-palmitoleic acid vesicles.
    Teo YY; Misran M; Low KH
    J Liposome Res; 2014 Sep; 24(3):241-8. PubMed ID: 24597523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic relaxation drives expulsion in giant unilamellar vesicles.
    Leirer CT; Wunderlich B; Wixforth A; Schneider MF
    Phys Biol; 2009 Apr; 6(1):016011. PubMed ID: 19342768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles.
    Hunter DG; Frisken BJ
    Biophys J; 1998 Jun; 74(6):2996-3002. PubMed ID: 9635753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar.
    Scott HL; Skinkle A; Kelley EG; Waxham MN; Levental I; Heberle FA
    Biophys J; 2019 Oct; 117(8):1381-1386. PubMed ID: 31586522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmotic properties of large unilamellar vesicles prepared by extrusion.
    Mui BL; Cullis PR; Evans EA; Madden TD
    Biophys J; 1993 Feb; 64(2):443-53. PubMed ID: 8457670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of quantum dots into the lipid bilayer of giant unilamellar vesicles and its stability.
    Wi HS; Kim SJ; Lee K; Kim SM; Yang HS; Pak HK
    Colloids Surf B Biointerfaces; 2012 Sep; 97():37-42. PubMed ID: 22580483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liposome preparation using a hollow fiber membrane contactor--application to spironolactone encapsulation.
    Laouini A; Jaafar-Maalej C; Sfar S; Charcosset C; Fessi H
    Int J Pharm; 2011 Aug; 415(1-2):53-61. PubMed ID: 21641982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of unilamellar liposomes of intermediate size (0.1-0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes.
    Szoka F; Olson F; Heath T; Vail W; Mayhew E; Papahadjopoulos D
    Biochim Biophys Acta; 1980 Oct; 601(3):559-71. PubMed ID: 6251878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.