BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23328412)

  • 1. Introduction of a thermophile-sourced ion pair network in the fourth beta/alpha unit of a psychophile-derived triosephosphate isomerase from Methanococcoides burtonii significantly increases its kinetic thermal stability.
    Dhaunta N; Arora K; Chandrayan SK; Guptasarma P
    Biochim Biophys Acta; 2013 Jun; 1834(6):1023-33. PubMed ID: 23328412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of ionic interactions profoundly lowers the kinetic thermal stability of Pyrococcus furiosus triosephosphate isomerase.
    Chandrayan SK; Guptasarma P
    Biochim Biophys Acta; 2009 Jun; 1794(6):905-12. PubMed ID: 19306952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of specific proline residues on the kinetic stability of the triosephosphate isomerases of two trypanosomes.
    Guzmán-Luna V; Quezada AG; Díaz-Salazar AJ; Cabrera N; Pérez-Montfort R; Costas M
    Proteins; 2017 Apr; 85(4):571-579. PubMed ID: 28002620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Super-perfect' enzymes: Structural stabilities and activities of recombinant triose phosphate isomerases from Pyrococcus furiosus and Thermococcus onnurineus produced in Escherichia coli.
    Sharma P; Guptasarma P
    Biochem Biophys Res Commun; 2015 May; 460(3):753-8. PubMed ID: 25824038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme.
    Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S
    FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-induced denaturation and renaturation of triosephosphate isomerase from Saccharomyces cerevisiae: evidence of dimerization coupled to refolding of the thermally unfolded protein.
    Benítez-Cardoza CG; Rojo-Domínguez A; Hernández-Arana A
    Biochemistry; 2001 Jul; 40(30):9049-58. PubMed ID: 11467968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature.
    Walden H; Taylor GL; Lorentzen E; Pohl E; Lilie H; Schramm A; Knura T; Stubbe K; Tjaden B; Hensel R
    J Mol Biol; 2004 Sep; 342(3):861-75. PubMed ID: 15342242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.
    Bandyopadhyay D; Murthy MR; Balaram H; Balaram P
    FEBS J; 2015 Oct; 282(20):3863-82. PubMed ID: 26206206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy based on thermal flexibility to design triosephosphate isomerase proteins with increased or decreased kinetic stability.
    Quezada AG; Cabrera N; Piñeiro Á; Díaz-Salazar AJ; Díaz-Mazariegos S; Romero-Romero S; Pérez-Montfort R; Costas M
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3017-3022. PubMed ID: 30143261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of the gene of the bifunctional PGK-TIM fusion protein from the hyperthermophilic bacterium Thermotoga maritima: design and characterization of the separate triosephosphate isomerase.
    Beaucamp N; Hofmann A; Kellerer B; Jaenicke R
    Protein Sci; 1997 Oct; 6(10):2159-65. PubMed ID: 9336838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct proteolysis-based purification of an overexpressed hyperthermophile protein from Escherichia coli lysate: a novel exploitation of the link between structural stability and proteolytic resistance.
    Mukherjee S; Guptasarma P
    Protein Expr Purif; 2005 Mar; 40(1):71-6. PubMed ID: 15721773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins.
    Romero-Romero S; Costas M; Rodríguez-Romero A; Alejandro Fernández-Velasco D
    Phys Chem Chem Phys; 2015 Aug; 17(32):20699-714. PubMed ID: 26206330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between Protein Thermal Flexibility and Kinetic Stability.
    Quezada AG; Díaz-Salazar AJ; Cabrera N; Pérez-Montfort R; Piñeiro Á; Costas M
    Structure; 2017 Jan; 25(1):167-179. PubMed ID: 28052236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power.
    Williams JC; Zeelen JP; Neubauer G; Vriend G; Backmann J; Michels PA; Lambeir AM; Wierenga RK
    Protein Eng; 1999 Mar; 12(3):243-50. PubMed ID: 10235625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conserved salt bridge linking two C-terminal beta/alpha units in homodimeric triosephosphate isomerase determines the folding rate of the monomer.
    Reyes-López CA; González-Mondragón E; Benítez-Cardoza CG; Chánez-Cárdenas ME; Cabrera N; Pérez-Montfort R; Hernández-Arana A
    Proteins; 2008 Aug; 72(3):972-9. PubMed ID: 18300228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions.
    Delboni LF; Mande SC; Rentier-Delrue F; Mainfroid V; Turley S; Vellieux FM; Martial JA; Hol WG
    Protein Sci; 1995 Dec; 4(12):2594-604. PubMed ID: 8580851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tiny TIM: a small, tetrameric, hyperthermostable triosephosphate isomerase.
    Walden H; Bell GS; Russell RJ; Siebers B; Hensel R; Taylor GL
    J Mol Biol; 2001 Mar; 306(4):745-57. PubMed ID: 11243785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex kinetics and residual structure in the thermal unfolding of yeast triosephosphate isomerase.
    Labastida-Polito A; Garza-Ramos G; Camarillo-Cadena M; Zubillaga RA; Hernández-Arana A
    BMC Biochem; 2015 Sep; 16():20. PubMed ID: 26334568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endoglucanase activity at a second site in
    Sharma P; Guptasarma P
    FEBS Open Bio; 2017 Aug; 7(8):1126-1143. PubMed ID: 28781953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.