BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 23328639)

  • 1. The neutrophil in chronic obstructive pulmonary disease.
    Hoenderdos K; Condliffe A
    Am J Respir Cell Mol Biol; 2013 May; 48(5):531-9. PubMed ID: 23328639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis.
    Simpson JL; Phipps S; Gibson PG
    Pharmacol Ther; 2009 Oct; 124(1):86-95. PubMed ID: 19555716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Proteases involved in airway inflammation of COPD].
    Kasagi S; Seyama K; Fukuchi Y
    Nihon Rinsho; 2003 Dec; 61(12):2113-8. PubMed ID: 14674319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient elevation of neutrophil proteinases in induced sputum during COPD exacerbation.
    Ilumets H; Rytilä PH; Sovijärvi AR; Tervahartiala T; Myllärniemi M; Sorsa TA; Kinnula VL
    Scand J Clin Lab Invest; 2008; 68(7):618-23. PubMed ID: 19378434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia upregulates neutrophil degranulation and potential for tissue injury.
    Hoenderdos K; Lodge KM; Hirst RA; Chen C; Palazzo SG; Emerenciana A; Summers C; Angyal A; Porter L; Juss JK; O'Callaghan C; Chilvers ER; Condliffe AM
    Thorax; 2016 Nov; 71(11):1030-1038. PubMed ID: 27581620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticosteroids differentially regulate MMP-9 and neutrophil elastase in COPD.
    Vlahos R; Wark PA; Anderson GP; Bozinovski S
    PLoS One; 2012; 7(3):e33277. PubMed ID: 22413009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers.
    Chin CL; Manzel LJ; Lehman EE; Humlicek AL; Shi L; Starner TD; Denning GM; Murphy TF; Sethi S; Look DC
    Am J Respir Crit Care Med; 2005 Jul; 172(1):85-91. PubMed ID: 15805181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia Increases the Potential for Neutrophil-mediated Endothelial Damage in Chronic Obstructive Pulmonary Disease.
    Lodge KM; Vassallo A; Liu B; Long M; Tong Z; Newby PR; Agha-Jaffar D; Paschalaki K; Green CE; Belchamber KBR; Ridger VC; Stockley RA; Sapey E; Summers C; Cowburn AS; Chilvers ER; Li W; Condliffe AM
    Am J Respir Crit Care Med; 2022 Apr; 205(8):903-916. PubMed ID: 35044899
    [No Abstract]   [Full Text] [Related]  

  • 9. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro.
    Allport JR; Lim YC; Shipley JM; Senior RM; Shapiro SD; Matsuyoshi N; Vestweber D; Luscinskas FW
    J Leukoc Biol; 2002 May; 71(5):821-8. PubMed ID: 11994507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of human airway smooth muscle apoptosis by neutrophils and neutrophil elastase.
    Oltmanns U; Sukkar MB; Xie S; John M; Chung KF
    Am J Respir Cell Mol Biol; 2005 Apr; 32(4):334-41. PubMed ID: 15653931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemophilus influenzae induces neutrophil necrosis: a role in chronic obstructive pulmonary disease?
    Naylor EJ; Bakstad D; Biffen M; Thong B; Calverley P; Scott S; Hart CA; Moots RJ; Edwards SW
    Am J Respir Cell Mol Biol; 2007 Aug; 37(2):135-43. PubMed ID: 17363778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model of protease-antiprotease homeostasis failure in chronic obstructive pulmonary disease (COPD).
    Cox LA
    Risk Anal; 2009 Apr; 29(4):576-86. PubMed ID: 19000077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema.
    Abboud RT; Vimalanathan S
    Int J Tuberc Lung Dis; 2008 Apr; 12(4):361-7. PubMed ID: 18371259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic obstructive pulmonary disease, neutrophils and bacteria: from science to integrated care pathways.
    Stockley RA
    Clin Med (Lond); 2004; 4(6):567-72. PubMed ID: 15656482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease.
    Sethi S; Wrona C; Eschberger K; Lobbins P; Cai X; Murphy TF
    Am J Respir Crit Care Med; 2008 Mar; 177(5):491-7. PubMed ID: 18079493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neutrophil in chronic obstructive pulmonary disease.
    Quint JK; Wedzicha JA
    J Allergy Clin Immunol; 2007 May; 119(5):1065-71. PubMed ID: 17270263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic inflammation in chronic obstructive pulmonary disease and asthma: Similarities and differences.
    Higashimoto Y; Yamagata Y; Taya S; Iwata T; Okada M; Ishiguchi T; Sato H; Itoh H
    Respirology; 2008 Jan; 13(1):128-33. PubMed ID: 18197923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelial interactions of neutrophils under flow in chronic obstructive pulmonary disease.
    Woolhouse IS; Bayley DL; Lalor P; Adams DH; Stockley RA
    Eur Respir J; 2005 Apr; 25(4):612-7. PubMed ID: 15802333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired neutrophil chemotaxis in chronic obstructive pulmonary disease.
    Yoshikawa T; Dent G; Ward J; Angco G; Nong G; Nomura N; Hirata K; Djukanovic R
    Am J Respir Crit Care Med; 2007 Mar; 175(5):473-9. PubMed ID: 17110644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of bacteria in airway inflammation in exacerbations of chronic obstructive pulmonary disease.
    Murphy TF
    Curr Opin Infect Dis; 2006 Jun; 19(3):225-30. PubMed ID: 16645482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.