These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23329440)

  • 1. Introduction to glass microstructuring techniques.
    Mazurczyk R; Mansfield CD
    Methods Mol Biol; 2013; 949():125-40. PubMed ID: 23329440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of fully microfabricated, three-dimensionally sharp electrospray ionization tips with microfluidic glass chips.
    Sainiemi L; Sikanen T; Kostiainen R
    Anal Chem; 2012 Nov; 84(21):8973-9. PubMed ID: 23045954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface reactions in microelectronics process technology.
    Levitin G; Hess DW
    Annu Rev Chem Biomol Eng; 2011; 2():299-324. PubMed ID: 22432621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glass microstructure capping and bonding techniques.
    Mazurczyk R; Mansfield CD; Lygan M
    Methods Mol Biol; 2013; 949():141-51. PubMed ID: 23329441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet-etching of structures with straight facets and adjustable taper into glass substrates.
    Pekas N; Zhang Q; Nannini M; Juncker D
    Lab Chip; 2010 Feb; 10(4):494-8. PubMed ID: 20126690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and safe microwave-assisted glass channel-shaped microstructure fabrication.
    Zacheo A; Zizzari A; Perrone E; Carbone L; Giancane G; Valli L; Rinaldi R; Arima V
    Lab Chip; 2015 Jun; 15(11):2395-9. PubMed ID: 25920905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminar flow used as "liquid etch mask" in wet chemical etching to generate glass microstructures with an improved aspect ratio.
    Mu X; Liang Q; Hu P; Ren K; Wang Y; Luo G
    Lab Chip; 2009 Jul; 9(14):1994-6. PubMed ID: 19568665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication techniques for biologists: a primer on building micromachines.
    Chinn D
    Methods Mol Biol; 2010; 583():1-53. PubMed ID: 19763458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of glass microchannels by xurography for electrophoresis applications.
    Pessoa de Santana P; Segato TP; Carrilho E; Lima RS; Dossi N; Kamogawa MY; Gobbi AL; Piazzeta MH; Piccin E
    Analyst; 2013 Mar; 138(6):1660-4. PubMed ID: 23392529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green microfluidic devices made of corn proteins.
    Luecha J; Hsiao A; Brodsky S; Liu GL; Kokini JL
    Lab Chip; 2011 Oct; 11(20):3419-25. PubMed ID: 21918783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates.
    Segato TP; Coltro WK; Almeida AL; Piazetta MH; Gobbi AL; Mazo LH; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2526-33. PubMed ID: 20665913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maskless wafer-level microfabrication of optical penetrating neural arrays out of soda-lime glass: Utah Optrode Array.
    Boutte RW; Blair S
    Biomed Microdevices; 2016 Dec; 18(6):115. PubMed ID: 27943003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser ablation as a fabrication technique for microfluidic devices.
    Waddell EA
    Methods Mol Biol; 2006; 321():27-38. PubMed ID: 16508063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.
    Han A; Wang O; Graff M; Mohanty SK; Edwards TL; Han KH; Bruno Frazier A
    Lab Chip; 2003 Aug; 3(3):150-7. PubMed ID: 15100766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).
    Shang J; Chen B; Lin W; Wong CP; Zhang D; Xu C; Liu J; Huang QA
    Lab Chip; 2011 Apr; 11(8):1532-40. PubMed ID: 21387022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of microscale structures in enclosed microfluidic networks by using a magnetic beads based method.
    Wang Z; Zhang X; Yang J; Yang Z; Wan X; Hu N; Zheng X
    Anal Chim Acta; 2013 Aug; 792():66-71. PubMed ID: 23910969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile methods for the fabrication of polyvinylidene fluoride microstructures.
    Gallego-Perez D; Ferrell NJ; Higuita-Castro N; Hansford DJ
    Biomed Microdevices; 2010 Dec; 12(6):1009-17. PubMed ID: 20700656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of SERS-active microspheres for molecular detection.
    Hwang H; Kim SH; Yang SM
    Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fully microfabricated carbon nanotube three-electrode system on glass substrate for miniaturized electrochemical biosensors.
    Kim JH; Lee JY; Jin JH; Park CW; Lee CJ; Min NK
    Biomed Microdevices; 2012 Jun; 14(3):613-24. PubMed ID: 22391878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.