These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23329670)

  • 41. Comparison of posterior corneal imaging before and after LASIK using dual rotating scheimpflug and scanning slit-beam corneal tomography systems.
    Sy ME; Ramirez-Miranda A; Zarei-Ghanavati S; Engle J; Danesh J; Hamilton DR
    J Refract Surg; 2013 Feb; 29(2):96-101. PubMed ID: 23380409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agreement of non-contact pachymetry after LASIK: comparison of combined scanning-slit/Placido disc topography and specular microscopy.
    López-Miguel A; Nieto JC; Díez-Cuenca M; Piñero DP; Maldonado MJ
    Eye (Lond); 2010 Jun; 24(6):1064-70. PubMed ID: 19786958
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between laser scanning in vivo confocal microscopy and noncontact specular microscopy in assessing corneal endothelial cell density and central corneal thickness.
    Salvetat ML; Zeppieri M; Miani F; Parisi L; Felletti M; Brusini P
    Cornea; 2011 Jul; 30(7):754-9. PubMed ID: 21150426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of central corneal thickness measurements by Pentacam, noncontact specular microscope, and ultrasound pachymetry in normal and post-LASIK eyes.
    Al-Ageel S; Al-Muammar AM
    Saudi J Ophthalmol; 2009 Oct; 23(3-4):181-7. PubMed ID: 23960858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of the precision of the Topcon SP-3000P specular microscope and an ultrasound pachymeter.
    Almubrad TM; Osuagwu UL; Alabbadi I; Ogbuehi KC
    Clin Ophthalmol; 2011; 5():871-6. PubMed ID: 21760714
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of central corneal thickness measurement with RTVue spectral domain optical coherence tomography in normal subjects.
    Rao HL; Kumar AU; Kumar A; Chary S; Senthil S; Vaddavalli PK; Garudadri CS
    Cornea; 2011 Feb; 30(2):121-6. PubMed ID: 20885314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy.
    Rajan MS; O'Brart D; Jaycock P; Marshall J
    Ophthalmology; 2006 Oct; 113(10):1798-806. PubMed ID: 17011958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparability and repeatability of pachymetry in keratoconus using four noncontact techniques.
    Kumar M; Shetty R; Jayadev C; Dutta D
    Indian J Ophthalmol; 2015 Sep; 63(9):722-7. PubMed ID: 26632128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Corneal topography after excimer laser photorefractive keratectomy for myopia.
    Trocmé SD; Mack KA; Gill KS; Gold DH; Milstein BA
    J Am Optom Assoc; 1997 Jul; 68(7):448-51. PubMed ID: 9248252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraoperator repeatability and interoperator reproducibility in the ultrasonic pachymetry measurements of central corneal thickness.
    Kiddee W; Horattanareung O
    J Med Assoc Thai; 2009 May; 92(5):672-6. PubMed ID: 19459530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Analysis of the dynamic changes of cornea after myopic excimer laser in situ keratomileusis using an Orbscan II topography system].
    Wu XY; Liu SZ; Hu SF; Li CL
    Zhonghua Yan Ke Za Zhi; 2006 Sep; 42(9):777-81. PubMed ID: 17173736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in central corneal thickness values after instillation of oxybuprocaine hydrochloride 0.4%.
    Ogbuehi KC; Chijuka JC; Osuagwu UL
    Cont Lens Anterior Eye; 2012 Oct; 35(5):199-202. PubMed ID: 22704944
    [TBL] [Abstract][Full Text] [Related]  

  • 53. White-to-white corneal diameter differences in moderately and highly myopic eyes: partial coherence interferometry versus scanning-slit topography.
    Martin R; Ortiz S; Rio-Cristobal A
    J Cataract Refract Surg; 2013 Apr; 39(4):585-9. PubMed ID: 23415065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses.
    Ge L; Yuan Y; Shen M; Tao A; Wang J; Lu F
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):746-55. PubMed ID: 23139281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corneal deformation measurement using Scheimpflug noncontact tonometry.
    Hon Y; Lam AK
    Optom Vis Sci; 2013 Jan; 90(1):e1-8. PubMed ID: 23238261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry.
    Uçakhan OO; Ozkan M; Kanpolat A
    J Cataract Refract Surg; 2006 Jun; 32(6):970-7. PubMed ID: 16814055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wound healing anomalies after excimer laser photorefractive keratectomy: correlation of clinical outcomes, corneal topography, and confocal microscopy.
    Steinert RF
    Trans Am Ophthalmol Soc; 1997; 95():629-714. PubMed ID: 9440190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intrasession Repeatability and Intersession Reproducibility Measurements Using VX120 Multidiagnostic Unit.
    Sanchez I; Ortiz-Toquero S; Martin R
    Eye Contact Lens; 2018 Nov; 44 Suppl 2():S266-S272. PubMed ID: 29461300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Central corneal thickness measurements with different imaging devices and ultrasound pachymetry.
    Tai LY; Khaw KW; Ng CM; Subrayan V
    Cornea; 2013 Jun; 32(6):766-71. PubMed ID: 23095499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.