BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 23330435)

  • 1. [Response of the retina of Pacific salmon fry to magnetic field and ultraviolet radiation].
    Maksimovich AA; Gniubkina VP
    Morfologiia; 2012; 142(5):34-8. PubMed ID: 23330435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structure of the retina of Pacific salmon fry in twilight illumination during the geomagnetic field changes].
    Maksimovich AA; Gniubkina VP
    Morfologiia; 2010; 137(2):27-31. PubMed ID: 20572390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influence of weak magnetic fields on fish retina photoreceptors].
    Maksimovich AA; Zagal'skaia EO
    Biofizika; 2007; 52(5):916-23. PubMed ID: 17969928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Morphology of retinomotor response of Oncorhynchus masou fry exposed in magnetic field and red light].
    Zagal'skaia EO; Gniubkina VP; Maksimovich AA
    Morfologiia; 2004; 126(6):32-6. PubMed ID: 15839248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination.
    Maksimovich AA; Kondrashev SL; Gnyubkina VP
    Neurosci Behav Physiol; 2008 Oct; 38(8):821-7. PubMed ID: 18802765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Magnetic field induced structural changes of Oncorhynchus masou retina ].
    Zagal'skaia EO; Gniubkina VP; Maksimovich AA
    Morfologiia; 2004; 125(2):47-51. PubMed ID: 15232871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphological changes in the retina of Pacific salmon Oncorhynchus masou fry in response to geomagnetic field compensation under conditions of normal illumination].
    Maksimovich AA; Kondrashev SL; Gniubkina VP
    Morfologiia; 2007; 132(4):44-51. PubMed ID: 17969428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development.
    Cheng CL; Flamarique IN
    J Exp Biol; 2007 Dec; 210(Pt 23):4123-35. PubMed ID: 18025012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The retinomotor reaction of the retina of young dog salmon Oncorhynchus keta on adaptation to light and the field of a permanent magnet.
    Gnyubkina VP; Maksimovich AA
    Neurosci Behav Physiol; 2008 Oct; 38(8):867-71. PubMed ID: 18802761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of ultraviolet-sensitive cones in the retina of rainbow trout (Oncorhynchus mykiss).
    Allison WT; Dann SG; Helvik JV; Bradley C; Moyer HD; Hawryshyn CW
    J Comp Neurol; 2003 Jun; 461(3):294-306. PubMed ID: 12746869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor distribution in the retina of adult Pacific salmon: corner cones express blue opsin.
    Cheng CL; Flamarique IN
    Vis Neurosci; 2007; 24(3):269-76. PubMed ID: 17592670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological characteristics of the retinomotor response in salmon trout (oncorhynchus masou) fry in a magnetic field and red light.
    Zagal'skaya EO; Gnyubkina VP; Maksimovich AA
    Neurosci Behav Physiol; 2005 Nov; 35(9):903-7. PubMed ID: 16270170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional topography of rod and cone photoreceptors in macaque retina determined by retinal densitometry.
    Hanazono G; Tsunoda K; Kazato Y; Suzuki W; Tanifuji M
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2796-803. PubMed ID: 22427587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina.
    Szél A; von Schantz M; Röhlich P; Farber DB; van Veen T
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3641-5. PubMed ID: 8258523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.