BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23330635)

  • 1. Influence of RGD grafting on biocompatibility of oxidized cellulose scaffold.
    Mahmoodi M; Hossainalipour SM; Naimi-Jamal MR; Samani S; Samadikuchaksaraei A; Rezaie HR
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):421-7. PubMed ID: 23330635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication, characterization and biocompatibility of collagen/oxidized regenerated cellulose-Ca composite scaffold for carrying Schwann cells.
    Song W; Zhao Y; Wu Y; Li Z; Lv H; Li S; Jiang Y; Song C; Wang F; Huang Y
    Int J Biol Macromol; 2018 Nov; 119():1195-1203. PubMed ID: 30110602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of novel bilayer scaffold from nanocellulose based aerogel for skin tissue engineering applications.
    Ghafari R; Jonoobi M; Amirabad LM; Oksman K; Taheri AR
    Int J Biol Macromol; 2019 Sep; 136():796-803. PubMed ID: 31226370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold.
    Hou Y; Wang X; Yang J; Zhu R; Zhang Z; Li Y
    J Biomed Mater Res A; 2018 May; 106(5):1288-1298. PubMed ID: 29316233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications.
    Qi A; Hoo SP; Friend J; Yeo L; Yue Z; Chan PP
    Adv Healthc Mater; 2014 Apr; 3(4):543-54. PubMed ID: 24039172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo.
    Khan S; Ul-Islam M; Ikram M; Islam SU; Ullah MW; Israr M; Jang JH; Yoon S; Park JK
    Int J Biol Macromol; 2018 Oct; 117():1200-1210. PubMed ID: 29894790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering.
    Kirdponpattara S; Khamkeaw A; Sanchavanakit N; Pavasant P; Phisalaphong M
    Carbohydr Polym; 2015 Nov; 132():146-55. PubMed ID: 26256335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin-PMVE/MA composite scaffold promotes expansion of embryonic stem cells.
    Chhabra H; Gupta P; Verma PJ; Jadhav S; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():184-94. PubMed ID: 24582239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture.
    Xiong G; Luo H; Zhu Y; Raman S; Wan Y
    Carbohydr Polym; 2014 Dec; 114():553-557. PubMed ID: 25263926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films.
    Cheng Y; Lu J; Liu S; Zhao P; Lu G; Chen J
    Carbohydr Polym; 2014 Jul; 107():57-64. PubMed ID: 24702918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application.
    Pour-Esmaeil S; Sharifi-Sanjani N; Khoee S; Taheri-Qazvini N
    Carbohydr Polym; 2020 Aug; 241():116322. PubMed ID: 32507210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q
    J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility of hydroxyethyl cellulose/glycine/RuO
    Mabrouk M; Ismail E; Beherei H; Abo-Elfadl MT; Salem ZA; Das DB; AbuBakr N
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2097-2108. PubMed ID: 35504415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.
    Shuai C; Mao Z; Lu H; Nie Y; Hu H; Peng S
    Biofabrication; 2013 Mar; 5(1):015014. PubMed ID: 23385303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications.
    Guo M; Li X
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1177-81. PubMed ID: 26478418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture.
    Xing Q; Zhao F; Chen S; McNamara J; Decoster MA; Lvov YM
    Acta Biomater; 2010 Jun; 6(6):2132-9. PubMed ID: 20035906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.