BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23330685)

  • 1. BioSM: metabolomics tool for identifying endogenous mammalian biochemical structures in chemical structure space.
    Hamdalla MA; Mandoiu II; Hill DW; Rajasekaran S; Grant DF
    J Chem Inf Model; 2013 Mar; 53(3):601-12. PubMed ID: 23330685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular structure matching approach to efficient identification of endogenous mammalian biochemical structures.
    Hamdalla MA; Ammar RA; Rajasekaran S
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S11. PubMed ID: 25859612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico enzymatic synthesis of a 400,000 compound biochemical database for nontargeted metabolomics.
    Menikarachchi LC; Hill DW; Hamdalla MA; Mandoiu II; Grant DF
    J Chem Inf Model; 2013 Sep; 53(9):2483-92. PubMed ID: 23991755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of graph matching algorithms to identify biochemical substructures in synthetic chemical compounds: Application to metabolomics.
    Hamdalla M; Grant D; Mandoiu I; Hill D; Rajasekaran S; Ammar R
    IEEE Int Conf Comput Adv Bio Med Sci; 2012 Feb; 2012():. PubMed ID: 26448899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathway predictions for metabolomics: a molecular structure matching approach.
    Hamdalla MA; Rajasekaran S; Grant DF; Măndoiu II
    J Chem Inf Model; 2015 Mar; 55(3):709-18. PubMed ID: 25668446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an Artificial Neural Network Retention Index Model for Chemical Structure Identification in Nontargeted Metabolomics.
    Samaraweera MA; Hall LM; Hill DW; Grant DF
    Anal Chem; 2018 Nov; 90(21):12752-12760. PubMed ID: 30350614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics.
    Jeffryes JG; Colastani RL; Elbadawi-Sidhu M; Kind T; Niehaus TD; Broadbelt LJ; Hanson AD; Fiehn O; Tyo KE; Henry CS
    J Cheminform; 2015; 7():44. PubMed ID: 26322134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Ecom₅₀ and retention index models for nontargeted metabolomics: identification of 1,3-dicyclohexylurea in human serum by HPLC/mass spectrometry.
    Hall LM; Hall LH; Kertesz TM; Hill DW; Sharp TR; Oblak EZ; Dong YW; Wishart DS; Chen MH; Grant DF
    J Chem Inf Model; 2012 May; 52(5):1222-37. PubMed ID: 22489687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Database searching for structural identification of metabolites in complex biofluids for mass spectrometry-based metabonomics.
    Kertesz TM; Hill DW; Albaugh DR; Hall LH; Hall LM; Grant DF
    Bioanalysis; 2009 Dec; 1(9):1627-43. PubMed ID: 21083108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaboMiner--semi-automated identification of metabolites from 2D NMR spectra of complex biofluids.
    Xia J; Bjorndahl TC; Tang P; Wishart DS
    BMC Bioinformatics; 2008 Nov; 9():507. PubMed ID: 19040747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra.
    Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking.
    Jayaseelan KV; Steinbeck C
    BMC Bioinformatics; 2014 Jul; 15():234. PubMed ID: 24996690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetFusion: integration of compound identification strategies.
    Gerlich M; Neumann S
    J Mass Spectrom; 2013 Mar; 48(3):291-8. PubMed ID: 23494783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite identification and molecular fingerprint prediction through machine learning.
    Heinonen M; Shen H; Zamboni N; Rousu J
    Bioinformatics; 2012 Sep; 28(18):2333-41. PubMed ID: 22815355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mWISE: An Algorithm for Context-Based Annotation of Liquid Chromatography-Mass Spectrometry Features through Diffusion in Graphs.
    Barranco-Altirriba M; Solà-Santos P; Picart-Armada S; Kanaan-Izquierdo S; Fonollosa J; Perera-Lluna A
    Anal Chem; 2021 Aug; 93(31):10772-10778. PubMed ID: 34320315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra.
    Allen F; Pon A; Wilson M; Greiner R; Wishart D
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W94-9. PubMed ID: 24895432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically Consistent Annotation of Metabolomics Data.
    Alden N; Krishnan S; Porokhin V; Raju R; McElearney K; Gilbert A; Lee K
    Anal Chem; 2017 Dec; 89(24):13097-13104. PubMed ID: 29156137
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.