These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 23330985)
1. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology. Karadag A; Yang X; Ozcelik B; Huang Q J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985 [TBL] [Abstract][Full Text] [Related]
2. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Pinnamaneni S; Das NG; Das SK Pharmazie; 2003 Aug; 58(8):554-8. PubMed ID: 12967032 [TBL] [Abstract][Full Text] [Related]
3. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures. Cheong AM; Tan CP; Nyam KL Food Sci Technol Int; 2018 Jul; 24(5):404-413. PubMed ID: 29466882 [TBL] [Abstract][Full Text] [Related]
4. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. Zahi MR; Wan P; Liang H; Yuan Q J Agric Food Chem; 2014 Dec; 62(52):12563-9. PubMed ID: 25514199 [TBL] [Abstract][Full Text] [Related]
5. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456 [TBL] [Abstract][Full Text] [Related]
6. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology. Hsieh CW; Li PH; Lu IC; Wang TH J Oleo Sci; 2012; 61(9):483-9. PubMed ID: 22975782 [TBL] [Abstract][Full Text] [Related]
7. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Li PH; Chiang BH Ultrason Sonochem; 2012 Jan; 19(1):192-7. PubMed ID: 21680223 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Mehmood T Food Chem; 2015 Sep; 183():1-7. PubMed ID: 25863602 [TBL] [Abstract][Full Text] [Related]
9. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Bai L; McClements DJ J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703 [TBL] [Abstract][Full Text] [Related]
10. Development of industrially feasible concentrated 30% and 40% nanoemulsions for intravenous drug delivery. Müller RH; Harden D; Keck CM Drug Dev Ind Pharm; 2012 Apr; 38(4):420-30. PubMed ID: 22088169 [TBL] [Abstract][Full Text] [Related]
11. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. Chang Y; McClements DJ J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878 [TBL] [Abstract][Full Text] [Related]
12. Optimization of homogenization-evaporation process for lycopene nanoemulsion production and its beverage applications. Kim SO; Ha TV; Choi YJ; Ko S J Food Sci; 2014 Aug; 79(8):N1604-10. PubMed ID: 25041657 [TBL] [Abstract][Full Text] [Related]
13. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. Tran TH; Guo Y; Song D; Bruno RS; Lu X J Pharm Sci; 2014 Mar; 103(3):840-52. PubMed ID: 24464737 [TBL] [Abstract][Full Text] [Related]
14. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117 [TBL] [Abstract][Full Text] [Related]
15. Identification of an emulsifier and conditions for preparing stable nanoemulsions containing the antioxidant astaxanthin. Kim DM; Hyun SS; Yun P; Lee CH; Byun SY Int J Cosmet Sci; 2012 Feb; 34(1):64-73. PubMed ID: 21883294 [TBL] [Abstract][Full Text] [Related]
17. Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin. Khalid N; Kobayashi I; Neves MA; Uemura K; Nakajima M; Nabetani H Food Chem; 2016 Dec; 212():27-34. PubMed ID: 27374502 [TBL] [Abstract][Full Text] [Related]
18. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. Vasiljevic D; Parojcic J; Primorac M; Vuleta G Int J Pharm; 2006 Feb; 309(1-2):171-7. PubMed ID: 16406403 [TBL] [Abstract][Full Text] [Related]
19. Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content. Calligaris S; Plazzotta S; Valoppi F; Anese M Food Res Int; 2018 May; 107():700-707. PubMed ID: 29580537 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation. Liu F; Zhu Z; Ma C; Luo X; Bai L; Decker EA; Gao Y; McClements DJ J Agric Food Chem; 2016 Dec; 64(50):9532-9541. PubMed ID: 27936671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]