These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813 [TBL] [Abstract][Full Text] [Related]
3. Breast tumor cell detection at single cell resolution using an electrochemical impedance technique. Arya SK; Lee KC; Bin Dah'alan D; Daniel ; Rahman AR Lab Chip; 2012 Jul; 12(13):2362-8. PubMed ID: 22513827 [TBL] [Abstract][Full Text] [Related]
4. A label-free DC impedance-based microcytometer for circulating rare cancer cell counting. Choi H; Kim KB; Jeon CS; Hwang I; Lee S; Kim HK; Kim HC; Chung TD Lab Chip; 2013 Mar; 13(5):970-7. PubMed ID: 23340965 [TBL] [Abstract][Full Text] [Related]
5. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Liu Y; Zhu F; Dan W; Fu Y; Liu S Analyst; 2014 Oct; 139(20):5086-92. PubMed ID: 25110907 [TBL] [Abstract][Full Text] [Related]
6. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface. Ng E; Hoshino K; Zhang X Methods; 2013 Oct; 63(3):266-75. PubMed ID: 24012763 [TBL] [Abstract][Full Text] [Related]
8. Anti-EpCAM modified LC-SPDP monolayer on gold microelectrode based electrochemical biosensor for MCF-7 cells detection. Arya SK; Wang KY; Wong CC; Rahman AR Biosens Bioelectron; 2013 Mar; 41():446-51. PubMed ID: 23021854 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Thege FI; Lannin TB; Saha TN; Tsai S; Kochman ML; Hollingsworth MA; Rhim AD; Kirby BJ Lab Chip; 2014 May; 14(10):1775-84. PubMed ID: 24681997 [TBL] [Abstract][Full Text] [Related]
10. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Moscovici M; Bhimji A; Kelley SO Lab Chip; 2013 Mar; 13(5):940-6. PubMed ID: 23334685 [TBL] [Abstract][Full Text] [Related]
11. Chemically Modified Plastic Tube for High Volume Removal and Collection of Circulating Tumor Cells. Gaitas A; Kim G PLoS One; 2015; 10(7):e0133194. PubMed ID: 26176235 [TBL] [Abstract][Full Text] [Related]
12. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. Xie J; Gao Y; Zhao R; Sinko PJ; Gu S; Wang J; Li Y; Lu Y; Yu S; Wang L; Chen S; Shao J; Jia L J Control Release; 2015 Jul; 209():159-69. PubMed ID: 25933713 [TBL] [Abstract][Full Text] [Related]
13. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells. Horák D; Svobodová Z; Autebert J; Coudert B; Plichta Z; Královec K; Bílková Z; Viovy JL J Biomed Mater Res A; 2013 Jan; 101(1):23-32. PubMed ID: 22767416 [TBL] [Abstract][Full Text] [Related]
14. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
15. Nano "fly paper" technology for the capture of circulating tumor cells. Wang S; Owens GE; Tseng HR Methods Mol Biol; 2011; 726():141-50. PubMed ID: 21424448 [TBL] [Abstract][Full Text] [Related]
16. Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Kumeria T; Kurkuri MD; Diener KR; Parkinson L; Losic D Biosens Bioelectron; 2012 May; 35(1):167-173. PubMed ID: 22429961 [TBL] [Abstract][Full Text] [Related]
17. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Mamouni J; Yang L Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766 [TBL] [Abstract][Full Text] [Related]
18. Re: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Connelly M; Wang Y; Doyle GV; Terstappen L; McCormack R J Natl Cancer Inst; 2009 Jun; 101(12):895; author reply 896-7. PubMed ID: 19509360 [No Abstract] [Full Text] [Related]
19. Re: Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Hayes DF; Cristofanilli M J Natl Cancer Inst; 2009 Jun; 101(12):894-5; author reply 896-7. PubMed ID: 19509356 [No Abstract] [Full Text] [Related]
20. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads. Kim YJ; Koo GB; Lee JY; Moon HS; Kim DG; Lee DG; Lee JY; Oh JH; Park JM; Kim MS; Woo HG; Kim SI; Kang P; Choi W; Sim TS; Park WY; Lee JG; Kim YS Biomaterials; 2014 Aug; 35(26):7501-10. PubMed ID: 24917030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]