BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23331166)

  • 1. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions.
    Garg S; Ito H; Rose AL; Waite TD
    Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights.
    Garg S; Jiang C; Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter.
    Bligh MW; Waite TD
    Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of pH on Iron Redox Transformations in Simulated Freshwaters Containing Natural Organic Matter.
    Garg S; Jiang C; Waite TD
    Environ Sci Technol; 2018 Nov; 52(22):13184-13194. PubMed ID: 30362718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters.
    Miller CJ; Vincent Lee SM; Rose AL; Waite TD
    Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron Redox Transformations in the Presence of Natural Organic Matter: Effect of Calcium.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2017 Sep; 51(18):10413-10422. PubMed ID: 28782358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of fulvic acid to the photochemical formation of Fe(II) in acidic Suwannee River fulvic acid solutions.
    Arakaki T; Saito K; Okada K; Nakajima H; Hitomi Y
    Chemosphere; 2010 Feb; 78(8):1023-7. PubMed ID: 20056515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa.
    Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD
    Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Cu(II) reduction by natural organic matter.
    Pham AN; Rose AL; Waite TD
    J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter.
    Rose AL; Waite TD
    Environ Sci Technol; 2002 Feb; 36(3):433-44. PubMed ID: 11871559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.
    Yuan X; Davis JA; Nico PS
    Environ Sci Technol; 2016 Feb; 50(4):1731-40. PubMed ID: 26789138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunlight-Mediated Reductive Transformation of Thallium(III) in Acidic Natural Organic Matter Solutions: Mechanisms and Kinetic Modeling.
    Ma C; Huang R; Huangfu X; Ma J
    Environ Sci Technol; 2023 May; 57(19):7466-7477. PubMed ID: 37134314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction?
    Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O
    J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater.
    Fujii M; Rose AL; Waite TD; Omura T
    Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use.
    Rose AL; Waite TD
    Anal Chem; 2001 Dec; 73(24):5909-20. PubMed ID: 11791560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Mediated Reactive Oxygen Species Generation and Iron Redox Transformations in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Aug; 51(15):8384-8395. PubMed ID: 28650640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.