BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23331166)

  • 21. A mechanism study of light-induced Cr(VI) reduction in an acidic solution.
    Wang SL; Chen CC; Tzou YM; Hsu CL; Chen JH; Lin CF
    J Hazard Mater; 2009 May; 164(1):223-8. PubMed ID: 18789578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox Transformations of Iron in the Presence of Exudate from the Cyanobacterium Microcystis aeruginosa under Conditions Typical of Natural Waters.
    Wang K; Garg S; Waite TD
    Environ Sci Technol; 2017 Mar; 51(6):3287-3297. PubMed ID: 28233985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic studies of reactions of iron(IV)-oxo porphyrin radical cations with organic reductants.
    Pan Z; Zhang R; Newcomb M
    J Inorg Biochem; 2006 Apr; 100(4):524-32. PubMed ID: 16500709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measured rates of fluoride/metal association correlate with rates of superoxide/metal reactions for Fe(III)EDTA(H2O)- and related complexes.
    Summers JS; Baker JB; Meyerstein D; Mizrahi A; Zilbermann I; Cohen H; Wilson CM; Jones JR
    J Am Chem Soc; 2008 Feb; 130(5):1727-34. PubMed ID: 18186636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-UV photooxidation of As(III) by iron species in the presence of fulvic acid.
    Pozdnyakov IP; Romanova TE; Cai X; Salomatova VA; Plyusnin VF; Na P; Shuvaeva OV
    Chemosphere; 2017 Aug; 181():337-342. PubMed ID: 28456035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of light and Suwanee River Fulvic Acid on O
    Rong H; Garg S; Waite TD
    Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.
    Wasser IM; Fry HC; Hoertz PG; Meyer GJ; Karlin KD
    Inorg Chem; 2004 Dec; 43(26):8272-81. PubMed ID: 15606173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of iron species in the photo-transformation of phenol in artificial and natural seawater.
    Calza P; Massolino C; Pelizzetti E; Minero C
    Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 degrees C.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jun; 112(24):5395-405. PubMed ID: 18507361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photo-oxidation of arsenite in acidic waters containing Suwannee River fulvic acid: roles of
    Wang Y; Gong X; Dong X
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45144-45154. PubMed ID: 33864218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution--basic principles and a simple heuristic description.
    Morgan B; Lahav O
    Chemosphere; 2007 Aug; 68(11):2080-4. PubMed ID: 17368726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances.
    Zhan M; Yang X; Xian Q; Kong L
    Chemosphere; 2006 Apr; 63(3):378-86. PubMed ID: 16289215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation.
    Sun C; Chen C; Ma W; Zhao J
    Phys Chem Chem Phys; 2011 Feb; 13(6):1957-69. PubMed ID: 21082142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    Chem Res Toxicol; 2012 Jan; 25(1):207-15. PubMed ID: 22145785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron.
    Mak MS; Lo IM
    Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosensitized degradation of caffeine: role of fulvic acids and nitrate.
    Jacobs LE; Weavers LK; Houtz EF; Chin YP
    Chemosphere; 2012 Jan; 86(2):124-9. PubMed ID: 22055309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of reactive oxygen-derived species by redox reactions between Fe(II)cytochrome c and oxygen. A kinetic study.
    Ferri A; Calza R
    Biochem Mol Biol Int; 1995 Apr; 35(4):691-7. PubMed ID: 7627118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.